Catalan.jl

Catalan: a combinatorics library for Julia
Popularity
10 Stars
Updated Last
2 Years Ago
Started In
April 2012

catalan

THIS PACKAGE IS DEPRECATED: Please use Combinatorics.jl instead.

Catalan: a combinatorics library for Julia, focusing mostly (as of now) on enumerative combinatorics and permutations. As overflows are expected even for low values, most of the functions always return BigInt, and are marked as such below.

This library provides the following functions:

  • bell(n): returns the n-th Bell number; always returns a BigInt;
  • catalan(n): returns the n-th Catalan number; always returns a BigInt;
  • derangement(n)/subfactorial(n): returns the number of permutations of n with no fixed points; always returns a BigInt;
  • doublefactorial(n): returns the double factorial n!!; always returns a BigInt;
  • fibonacci(n): the n-th Fibonacci number; always returns a BigInt;
  • hyperfactorial(n): the n-th hyperfactorial, i.e. prod([i^i for i = 2:n]; always returns a BigInt;
  • integer_partitions(n): returns a Vector{Int} consisting of the partitions of the number n.
  • jacobisymbol(a,b): returns the Jacobi symbol (a/b);
  • lassalle(n): returns the nth Lassalle number An defined in arXiv:1009.4225 (OEIS A180874); always returns a BigInt;
  • legendresymbol(a,p): returns the Legendre symbol (a/p);
  • lucas(n): the n-th Lucas number; always returns a BigInt;
  • multifactorial(n): returns the m-multifactorial n(!^m); always returns a BigInt;
  • multinomial(k...): receives a tuple of k_1, ..., k_n and calculates the multinomial coefficient (n k), where n = sum(k); returns a BigInt only if given a BigInt;
  • primorial(n): returns the product of all positive prime numbers <= n; always returns a BigInt;
  • stirlings1(n, k): the signed (n,k)-th Stirling number of the first kind; returns a BigInt only if given a BigInt.

Young diagrams

Limited support for working with Young diagrams is provided.

  • partitionsequence(a): computes partition sequence for an integer partition a
  • x = a \ b creates the skew diagram for partitions (tuples) a, b
  • isrimhook(x): checks if skew diagram x is a rim hook
  • leglength(x): computes leg length of rim hook x
  • character(a, b): computes character the partition b in the ath irrep of Sn