ClusterEnsembles.jl
A Julia package for cluster ensembles. Cluster ensembles generate a single consensus cluster using base clusters obtained from multiple clustering algorithms. The consensus cluster stably achieves a high clustering performance.
Installation
Pkg.add("ClusterEnsembles")
Usage
Simple example of cluster ensembles in the reference [1]
julia> using ClusterEnsembles
julia> base_cluster1 = [1 1 1 2 2 3 3];
julia> base_cluster2 = [2 2 2 3 3 1 1];
julia> base_cluster3 = [1 1 2 2 3 3 3];
julia> base_cluster4 = [1 2 missing 1 2 missing missing];
julia> base_clusters = [base_cluster1' base_cluster2' base_cluster3' base_cluster4']
7×4 Array{Union{Missing, Int64},2}:
1 2 1 1
1 2 1 2
1 2 2 missing
2 3 2 1
2 3 3 2
3 1 3 missing
3 1 3 missing
julia> cluster_ensembles(base_clusters, nclass=3, alg=:hbgf)
7-element Array{Int64,1}:
1
1
1
3
3
2
2
-
base_clusters
: Labels generated by base clustering algorithms. -
nclass
: Number of classes in a consensus cluster (default=nothing
). -
random_state
: Used for 'mcla' and 'nmf'. Pass a nonnegative integer for reproducible results (default=nothing
). -
alg
: {:cspa
,:mcla
,:hbgf
,:nmf
,:all
} (default=:hbgf
):cspa
: Cluster-based Similarity Partitioning Algorithm [1].:mcla
: Meta-CLustering Algorithm [1].:hbgf
: Hybrid Bipartite Graph Formulation [2].:nmf
: NMF-based consensus clustering [4].:all
: The consensus clustering label with the largest objective function value [1] is returned among the results of all solvers.Note: Please use
:hbgf
for large-scalebase_clusters
.
References
[1] A. Strehl and J. Ghosh, "Cluster ensembles -- a knowledge reuse framework for combining multiple partitions," Journal of Machine Learning Research, vol. 3, pp. 583-617, 2002.
[2] X. Z. Fern and C. E. Brodley, "Solving cluster ensemble problems by bipartite graph partitioning," In Proceedings of the Twenty-First International Conference on Machine Learning, p. 36, 2004.
[3] J. Ghosh and A. Acharya, "Cluster ensembles," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 4, pp. 305-315, 2011.
[4] T. Li, C. Ding, and M. I. Jordan, "Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization," In Proceedings of the Seventh IEEE International Conference on Data Mining, pp. 577-582, 2007.