ConceptnetNumberbatch.jl

Julia API for ConceptNetNumberbatch
Popularity
1 Star
Updated Last
8 Months Ago
Started In
September 2018

ConceptnetNumberbatch.jl

An Julia interface to ConceptNetNumberbatch

License Build Status Coverage Status

Introduction

This package is a simple API to ConceptNetNumberbatch.

Documentation

The following examples illustrate some common usage patterns:

julia> using Conceptnet, Languages
       file_conceptnet = download_embeddings(url=CONCEPTNET_HDF5_LINK,
                                             localfile="./_conceptnet_/conceptnet.h5");
# [ Info: Download ConceptNetNumberbatch to ./_conceptnet_/conceptnet.h5...
#   % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
#                                  Dload  Upload   Total   Spent    Left  Speed
# 100  127M  100  127M    0     0  3646k      0  0:00:35  0:00:35 --:--:-- 4107k
# "./_conceptnet_/conceptnet.h5"

# Load embeddings
julia> conceptnet = load_embeddings(file_conceptnet, languages=:en)
# ConceptNet{Languages.English} (compressed): 1 language(s), 150875 embeddings

julia> conceptnet["apple"]  # Get embeddings for a single word
# 300-element Array{Int8,1}:
#   0
#   0
#   1
#  -4
# ...

julia> conceptnet[["apple", "pear", "cherry"]]  # Get embeddings for multiple words
# 300×3 Array{Int8,2}:
#   0   0   0
#   0   0   0
#   1   1   1
#  -4  -6  -7
# ...
# Load multiple languages
julia> conceptnet = load_embeddings(file_conceptnet, languages=[:en, :fr])
# ConceptNet{Language} (compressed): 2 language(s), 174184 embeddings

julia> conceptnet["apple"]  # fails, language must be specified
# ERROR: ...

julia> [conceptnet[:en, "apple"] conceptnet[:fr, "poire"]]
# 300×2 Array{Int8,2}:
#   0   -2
#   0   -2
#   1   -2
#  -4   -7
# ...

# Wildcard matching
julia> conceptnet[:en, "xxyyzish"]  # returns embedding for "#####ish"
# 300×1 Array{Int8,2}:
#   5
#  -1
#   0
#   1
# ...
# Useful functions
julia> length(conceptnet)  # total number of embeddings for all languages
# 174184

julia> size(conceptnet)  # embedding vector length, number of embeddings
# (300, 174184)

julia> "apple" in conceptnet  # found in the English embeddings
# true

julia> "poire" in conceptnet  # found in the French embeddings
# true

julia> # `keys` returns an iterator for all words
       for word in Iterators.take(keys(conceptnet),3)
           println(word)
       end
# définie
# invités
# couvents

Document embedding is quite straightforward:

julia> doc = "embed this document containing X_#-s231 which cannot be embedded"
       edoc, idxs_missed = embed_document(conceptnet, doc, language=Languages.English(), keep_size=false)
       missed_words = tokenize_for_conceptnet(doc)[idx_missed]
       println("Missed word: $missed_word")
       edoc
# Missed word: SubString{String}["X_#-s231"]
# 300×8 Array{Int8,2}:
#   0   0   0   0   0   1   0   0
#  -1  -2  -1  -1  -3  -2  -3   0
#   1   5   0   4   6   6   6   2
# ...

Remarks

  • for the best speed, the HDF5 version should be used
  • the API is very fast for retrieving embeddings of single word exact matches
  • it is also quite fast for retrieving embeddings of wildcard matches (xyzabcish is matched to ######ish) and multiple word expressions of arbitrary length (provided these are embedded)
  • the document embedding is slower (scales with document length)

Installation

The installation can be done through the usual channels (manually by cloning the repository or installing it though the julia REPL).

License

This code has an MIT license and therefore it is free.

References

[1] ConceptNetNumberbatch GitHub homepage

[2] ConceptNet GitHub homepage

[3] Embeddings.jl GitHub homepage

Used By Packages