Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation for Julia.
Pkg.add("CovarianceMatrices")
This package provides types and methods applicable to obtain consistent estimates of the long-run covariance matrix of a random process.
Three classes of estimators are considered:
-
HAC a. Kernel b. EWC c. Smoothed d. VarHAC
-
HC
-
CR
-
DriscolKray
The typical application of these estimators is to conduct robust inference about the parameters of a statistical model.
The package extends methods defined in StatsBase.jl and GLM.jl to provide a plug-and-play replacement for the standard errors calculated by default by GLM.jl. The GLM.jl are implemented as an extension.
The API can be used regardless of whether the model is fit with GLM.jl and developers can extend their estimation methods to provide robust standard errors.
Let
$$ \sqrt{T}\Sigma_T^{-1/2}(\bar{X}_T - \mu_T) \xrightarrow{d} N(0, I_k), $$ where $$ \bar{X}T = \frac{1}{T}\sum{t=1}^T X_t,\quad \mu_T = E\bar{X}T, $$ and $\Sigma_T$ is the asymptotic variance of $\sqrt{T}\bar{X}T$, that is, $$ \Sigma_T := \lim{T\to\infty} \mathrm{Var}\left(\frac{1}{\sqrt{T}}\sum{t=1}^T X_t \right). $$
The covariance matrix
where
$$
\hat{\Gamma}(h) = \frac{1}{T-h}\sum_{t=h+1}^T (X_t - \bar{X}_T)(X_t - \bar{X}_T)',
$$
and
The kernel is a symmetric, real-valued, and non-negative function that determines the weights given to each sample autocovariance.
The kernel implemented in CovarianceMatrices
are:
Truncated
Bartlett
Parzen
Tukey-Hanning
Quadratic Spectral
A kernel based estimate of
Sigma_hat = aVar(Truncated(3.4), X)
Sigma_hat = aVar(Bartlett(3.4), X)
Sigma_hat = aVar(Parzen(3.4), X)
TruncatedKernel
BartlettKernel
ParzenKernel
TukeyHanningKernel
QuadraticSpectralKernel
For example, ParzenKernel{NeweyWest}()
returns an instance of TruncatedKernel
parametrized by NeweyWest
, the type that corresponds to the optimal bandwidth calculated following Newey and West (1994). Similarly, ParzenKernel{Andrews}()
corresponds to the optimal bandwidth obtained in Andrews (1991). If the bandwidth is known, it can be directly passed, i.e. TruncatedKernel(2)
.
In the regression context, the function vcov
does all the work:
vcov(::HAC, ::DataFrameRegressionModel; prewhite = true)
Consider the following artificial data (a regression with autoregressive error component):
using CovarianceMatrices
using Random, DataFrames, GLM
Random.seed!(1)
n = 500
x = randn(n,5)
u = zeros(2*n)
u[1] = rand()
for j in 2:2*n
u[j] = 0.78*u[j-1] + randn()
end
u = u[n+1:2*n]
y = 0.1 .+ x*[0.2, 0.3, 0.0, 0.0, 0.5] + u
df = convert(DataFrame,x)
df[!,:y] = y
The coefficient of the regression can be estimated using GLM
lm1 = glm(@formula(y~x1+x2+x3+x4+x5), df, Normal(), IdentityLink())
To get a consistent estimate of the long run variance of the estimated coefficients using a Quadratic Spectral kernel with automatic bandwidth selection à la Andrews
vcov(QuadraticSpectralKernel{Andrews}(), lm1, prewhite = false)
If one wants to estimate the long-time variance using the same kernel, but with a bandwidth selected à la Newey-West
vcov(QuadraticSpectralKernel{NeweyWest}(), lm1, prewhite = false)
The standard errors can be obtained by the stderror
method
stderror(::HAC, ::DataFrameRegressionModel; prewhite::Bool)
For the previous example:
stderror(QuadraticSpectralKernel{NeweyWest}(), lm1, prewhite = false)
The bandwidth selected by the automatic procedures can be accessed by optimalbandwidth
optimalbandwidth(QuadraticSpectralKernel{NeweyWest}(), lm1; prewhite = false)
optimalbandwidth(QuadraticSpectralKernel{Andrews}(), lm1; prewhite = false)
Alternatively, the optimal bandwidth is stored in the kernel structure (upon variance calculation) and can be accessed (this way requires, however, that the kernel type is materialized)
kernel = QuadraticSpectralKernel{NeweyWest}()
stderror(kernel, lm1, prewhite = false)
bw = CovarianceMatrices.bandwidth(kernel)
One might want to calculate a variance estimator when the regression (or some other model) is fit "manually". Below is an example of how this can be accomplished.
X = [ones(n) x]
_,K = size(X)
b = X\y
res = y .- X*b
momentmatrix = X.*res
B = inv(X'X) # Jacobian of moment conditions
bw = CovarianceMatrices.optimalbandwidth(kernel, momentmatrix, prewhite=false)
A = lrvar(QuadraticSpectralKernel(bw), momentmatrix, scale = n^2/(n-K)) # df adjustment is built into vcov
Σ = B*A*B
Σ .- vcov(QuadraticSpectralKernel(bw), lm1, dof_adjustment=true)
The utility function sandwich
does all this automatically:
vcov(QuadraticSpectralKernel(bw[1]), lm1, dof_adjustment=true) ≈ CovarianceMatrices.sandwich(QuadraticSpectralKernel(bw[1]), B, momentmatrix, dof = K)
vcov(QuadraticSpectralKernel(bw[1]), lm1, dof_adjustment=false) ≈ CovarianceMatrices.sandwich(QuadraticSpectralKernel(bw[1]), B, momentmatrix, dof = 0)
As in the HAC case, vcov
and stderror
are the main functions. They know get as argument the type of robust variance being sought
vcov(::HC, ::DataFrameRegressionModel)
Where HC is an abstract type with the following concrete types:
HC0
HC1
(this isHC0
with the degree of freedom adjustment)HC2
HC3
HC4
HC4m
HC5
using CovarianceMatrices, DataFrames, GLM
# A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)
# The weights are added just to test the interface and are not part
# of the original data
clotting = DataFrame(
u = log.([5,10,15,20,30,40,60,80,100]),
lot1 = [118,58,42,35,27,25,21,19,18],
lot2 = [69,35,26,21,18,16,13,12,12],
w = 9*[1/8, 1/9, 1/25, 1/6, 1/14, 1/25, 1/15, 1/13, 0.3022039]
)
wOLS = fit(GeneralizedLinearModel, @formula(lot1~u), clotting, Normal(), wts = clotting[!,:w])
vcov(HC0(),wOLS)
vcov(HC1(),wOLS)
vcov(HC2(),wOLS)
vcov(HC3(),wOLS)
vcov(HC4(),wOLS)
vcov(HC4m(),wOLS)
vcov(HC5(),wOLS)
The API of this class of estimators is subject to change, so please use it with care. The difficulty is that CRHC
type needs access to the clustering variables. For the moment, the following approach works
using RDatasets
df = dataset("plm", "Grunfeld")
lm = glm(@formula(Inv~Value+Capital), df, Normal(), IdentityLink())
vcov(CRHC1(:Firm, df), lm)
stderror(CRHC1(:Firm, df),lm)
Alternatively, the cluster indicator can be passed directly (but this will only work if there are not missing values)
vcov(CRHC1(df[:Firm]), lm)
stderror(CRHC1(df[:Firm]),lm)
As in the HAC
case, sandwich
and lrvar
can be leveraged to construct cluster-robust variances without relying on GLM.jl
.
using BenchmarkTools
## Calculating a HAC on a large matrix
Z = randn(10000, 10)
@btime aVar($(Bartlett{Andrews}()), $Z; prewhite = true)
681.166 μs (93 allocations: 3.91 MiB)
library(sandwich)
library(microbenchmark)
Z <- matrix(rnorm(10000*10), 10000, 10)
microbenchmark( "Bartlett/Newey" = {lrvar(Z, type = "Andrews", kernel = "Bartlett", adjust=FALSE)})
Unit: milliseconds
expr min lq mean median uq max neval
Bartlett/Newey 59.56402 60.7679 63.85169 61.47827 68.73355 82.26539 100