CUDAPreconditioners.jl

Convenience wrappers to incomplete factorizations from CUSPARSE to be used for iterative solvers of sparse linear systems on the GPU
Author Ceyron
Popularity
0 Stars
Updated Last
1 Year Ago
Started In
November 2022

CUDAPreconditioners.jl

Convenience wrappers to incomplete factorizations from CUSPARSE to be used for iterative solvers of sparse linear systems on the GPU. The implementations are adapted from the great tutorial of the Krylov.jl package.

Supports both Incomplete Cholesky factorization with zero fill-in (ic0) for symmetric positive definite matrices and Incomplete LU factorization with zero fill-in (ilu0).

The created preconditioners can be used with any iterative linear solver that supports right-preconditioning (e.g. gmres from Krylov.jl).

Examples

Solving the 1D Heat Equation on the GPU

The 1D Heat Equation

$$ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} $$

with homogeneous Dirichlet boundary conditions

$$ u(0,t) = u(1,t) = 0 $$

and a backward-in-time central-in-space discretization (implicit Euler) requires the solution to a linear system of equations in each iteration

$$ A u^{[t+1]} = u^{[t]} $$

for the vector of (interior) degrees of freedom. The matrix $A$ is tridiagonal and sparse. It has the structure

$$ A = \begin{pmatrix} 1 + 2 \alpha \frac{\Delta t}{\Delta x^2} & -\alpha \frac{\Delta t}{\Delta x^2} & 0 & \dots & 0 \\ -\alpha \frac{\Delta t}{\Delta x^2} & 1 + 2 \alpha \frac{\Delta t}{\Delta x^2} & -\alpha \frac{\Delta t}{\Delta x^2} & \dots & 0 \\ 0 & -\alpha \frac{\Delta t}{\Delta x^2} & 1 + 2 \alpha \frac{\Delta t}{\Delta x^2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 + 2 \alpha \frac{\Delta t}{\Delta x^2} \end{pmatrix} $$

It is unconditionally stable for all $\alpha$ and $\Delta t$.

Let's first assemble the matrix $A$ on the CPU and set up an initial condition.

using SparseArrays
using LinearAlgebra

N = 10_000  # Interior DoF without the 2 boundary points
Δx = 1 / (N + 1)
Δt = 0.1
α = 1.0

A = spdiagm(-1 => -α * Δt / Δx^2 * ones(N-1),
             0 => 1 .+ 2 * α * Δt / Δx^2 * ones(N),
             1 => -α * Δt / Δx^2 * ones(N-1))

mesh = range(0.0, 1.0, length=N+2)
u = ifelse.((mesh .> 0.2) .& (mesh .< 0.4), 1.0, 0.0)[2:end-1]

Let's move the matrix $A$ to the GPU and create a preconditioner for it.

using CUDA
using CUDA.CUSPARSE
using CUDAPreconditioners

A_gpu = CuSparseMatrixCSR(A)
P_r_gpu = ic0(A_gpu)

Then, we can solve the linear system on the GPU using the cg (conjugate gradient) solver from Krylov.jl.

using Krylov

u_gpu = CuArray(u)

# Solve without a preconditioner
u_gpu_next_no_preconditioner, solve_stats_no_preconditioner = cg(
    A_gpu,
    u_gpu,
)

# Solve with the preconditioner
u_gpu_next_with_preconditioner, solve_stats_with_preconditioner = cg(
    A_gpu,
    u_gpu,
    M=P_r_gpu,
    ldiv=true,
)

@show solve_stats_no_preconditioner.niter  # -> 9999
@show solve_stats_with_preconditioner.niter  # -> 7

The preconditioned version takes way fewer iterations to converge.

Solving the 1d Advection Equation

The 1D Advection Equation

$$ \frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 $$

with periodic boundary conditions

$$ u(0,t) = u(1,t) $$

and a backward-in-time first-order upwind discretization (implicit Euler) requires the solution to a linear system of equations in each iteration.

$$ A u^{[t+1]} = u^{[t]} $$

If we fix $c&gt;0$, we need backward-in-space approximation of the first derivative in order to stable. The system matrix, therefore, consists of a main diagonal and a lower diagonal band. It has the structure

$$ A = \begin{pmatrix} 1 + c \frac{\Delta t}{\Delta x} & 0 & 0 & \dots & -c \frac{\Delta t}{\Delta x} \\ -c \frac{\Delta t}{\Delta x} & 1 + c \frac{\Delta t}{\Delta x} & 0 & \dots & 0 \\ 0 & -c \frac{\Delta t}{\Delta x} & 1 + c \frac{\Delta t}{\Delta x} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 + c \frac{\Delta t}{\Delta x} \end{pmatrix} $$

The system matrix is singular, i.e. $\det(A)=0$, due to the periodic boundary conditions. Typically, this would require special care, but here our linear solver will converge anyway.

Again, let's first assemble the matrix $A$ on the CPU and set up an initial condition.

using SparseArrays
using LinearAlgebra

N = 10_000  # Interior DoF without the right periodic boundary point
Δx = 1 / N
Δt = 0.1
c = 1.0

A = spdiagm(-1 => -c * Δt / Δx * ones(N-1),
             0 => 1 .+ c * Δt / Δx * ones(N),
             1 => -c * Δt / Δx * ones(N-1))

A[end, 1] = -c * Δt / Δx

mesh = range(0.0, 1.0, length=N+1)
u = ifelse.((mesh .> 0.2) .& (mesh .< 0.4), 1.0, 0.0)[1:end-1]

Let's move the matrix $A$ to the GPU and create a preconditioner for it. We need an ilu0 preconditioner here, because the matrix is not symmetric.

using CUDA
using CUDA.CUSPARSE
using CUDAPreconditioners

A_gpu = CuSparseMatrixCSR(A)
P_r_gpu = ilu0(A_gpu)

Then, we can solve the linear system on the GPU using the bicgstab (BiConjugate Gradient Stabilized) solver from Krylov.jl.

using Krylov

u_gpu = CuArray(u)

# Solve without a preconditioner
u_gpu_next_no_preconditioner, solve_stats_no_preconditioner = bicgstab(
    A_gpu,
    u_gpu,
    itmax=100_000,
)

# Solve with the preconditioner
u_gpu_next_with_preconditioner, solve_stats_with_preconditioner = bicgstab(
    A_gpu,
    u_gpu,
    N=P_r_gpu,
    ldiv=true,
    itmax=100_000,
)

@show solve_stats_no_preconditioner.niter  # -> 58020
@show solve_stats_with_preconditioner.niter  # -> 1

Used By Packages

No packages found.