DashSVD.jl

Julia implementation for dashSVD Algorithm with Shifted Power Iteration for Sparse Data
Author My-laniaKeA
Popularity
0 Stars
Updated Last
1 Year Ago
Started In
May 2023

DashSVD

Build Status

This work is led by the THU-numbda group, and based on the dashSVD project.

A Julia implementation of the dynamic shifts-based randomized SVD (dashSVD) with PVE accuracy control.

Algorithm

image-20230516080736815

Interface

Parameters:

  • A: the input matrix of size (m, n)
  • k: the target rank of truncated SVD, k ≤ min(m,n)
  • p_max: the upper bound of power parameter p, default = 1000
  • s: the oversampling parameter, min(m,n) ≥ k + s, default = k/2
  • tol: the error tolerance for PVE, default = 1e-2

Returns:

  • U: the matrix of size (m, k) containing the first k left singular vectors of A
  • S: the vector of size (k, ) containing the k largest singular values of A in ascending order.
  • V: the matrix of size (n, k) containing the first k right singular vectors of A

Example

julia> using DashSVD
julia> A = randn(10, 6)
julia> U, S, V = dash_svd(A, 2)

Used By Packages

No packages found.