This is a small package, spun out of ACE.jl
. The original intended use case is managing (lists of) decorated particles, i.e., point clouds embedded in some vector space, where each point is decorated with additional features such as chemical species, charge, mass, etc. Documentation for now is this readme.
using DecoratedParticles, StaticArrays, LinearAlgebra, Zygote
using DecoratedParticles: PState, VState
DP = DecoratedParticles
x1 = PState( ๐ซ = randn(SVector{3, Float64}), z = 14 )
# ใ๐ซ:[-0.74, -2.27, -0.83], z:14ใ
x2 = PState( ๐ซ = randn(SVector{3, Float64}), z = 14 )
# ใ๐ซ:[-0.63, 0.67, -0.56], z:14ใ
๐ซ12 = VState(x2 - x1)
# ๏ฝ๐ซ:[0.11, 2.94, 0.27]๏ฝ
# extract the position
x1.๐ซ
# 3-element SVector{3, Float64} with indices SOneTo(3):
# -0.7424735839283951
# -2.271376247109223
# -0.8265064008465374
# arithmetic on particle states
x1 + ๐ซ12 โ x2
# true
f(X) = sum(DP.normsq(x.๐ซ) for x in X)
f([x1, x2])
# 4.115...
# the gradient of a PState is a VState
g = Zygote.gradient(f, [x1, x2])[1]
# 2-element Vector{VState{@NamedTuple{๐ซ::SVector{3, Float64}}}}:
#๏ฝ๐ซ:[-1.48, -4.54, -1.65]๏ฝ
#๏ฝ๐ซ:[-1.26, 1.35, -1.12]๏ฝ
g[1].๐ซ โ 2 * x1.๐ซ
# true
# Some property symbols are standardized, e.g. ๐ซ always means `position`
x1.๐ซ == position(x1) # true
# a 4-momentum might look like this
p = PState(๐ฉ = randn(SVector{3, Float64}), ๐ธ = rand())
p.๐ฉ == DP.momentum(p)
p.๐ธ == DP.energy(p)
Both AosSystem and SoaSystem are fully flexible regarding the
properties of the particles. Both DecoratedParticles implementations
have the same performance as FastSystem
but both are fully flexibly
regarding the types of particles.
using AtomsBuilder
sys = rattle!(bulk(:Si, cubic=true) * 2, 0.1); # AtomsBase.FlexibleSystem
fsys = FastSystem(sys); # AtomsBase.FastSystem
aos = DP.AosSystem(sys);
soa = DP.SoaSystem(sys);
x1 = aos[1] # PState, just sys.particles[1]
x2 = soa[1] # PState, generated from the arrays in sys
isbits(x1) # true
isbits(x2) # true
display(x1) # ใ๐ซ:[-0.01, -0.02, -0.1] ร
, ๐:28.085 u, ๐:Siใ
# specific symbols are taken equivalent to AtomsBase accessor functions e.g.
position(x1) == x1.๐ซ # true
mass(x1) == x1.๐ # true
species(x1) == x1.S # true
# Performance
# accessors are non-allocating:
_check_allocs(sys) = ( (@allocated position(sys, 1)) +
(@allocated mass(sys, 1)) +
(@allocated sys[1]) )
_check_allocs(sys) # 288
_check_allocs(fsys) # 0
_check_allocs(aos) # 0
_check_allocs(soa) # 0
# this has performance implications
using BenchmarkTools
# Silly test 1 : sum up the positions via `position(sys, i)` accessor
silly_test_1(sys) = sum( position(sys, i) for i = 1:length(sys) )
@btime silly_test_1($sys) # 8.819 ฮผs (320 allocations: 12.00 KiB)
@btime silly_test_1($fsys) # 50.405 ns (0 allocations: 0 bytes)
@btime silly_test_1($aos) # 50.447 ns (0 allocations: 0 bytes)
@btime silly_test_1($soa) # 50.405 ns (0 allocations: 0 bytes)
silly_test_2(sys) = sum( position(x) for x in sys )
@btime silly_test_2($sys) # 10.750 ฮผs (256 allocations: 18.00 KiB)
@btime silly_test_2($fsys) # 48.118 ns (0 allocations: 0 bytes)
@btime silly_test_2($aos) # 47.950 ns (0 allocations: 0 bytes)
@btime silly_test_2($soa) # 48.794 ns (0 allocations: 0 bytes)