FindComplexZeros.jl

Author yanhua-wang
Popularity
2 Stars
Updated Last
2 Years Ago
Started In
March 2022

Find complex zeros of a function

This package uses a discretised version of the argument principle to find regions containing zeros of an analytic function.

an exponential sum

Installing the package

using Pkg
Pkg.add("FindComplexZeros")

Using the package

using FindComplexZeros

findZerosWithSubdivision

Find zeros of a function within a given rectangular domain.

Each line of result contains the upper left, lower right corner of the rectangular box that contains the zero

An example:

function an_exp_sum(x)
    return (2+im)*exp((1+im)*x) + (3.5+im)*exp(x) + -im + (2 + 3im)*exp(-x) + (5 - im)*exp((-1+im)*x)
end

findZerosWithSubdivision(-10.2 + 10.22im, 10.1 - 10.1im, an_exp_sum)

countZeros

Count zeros of a function in a given rectangular domain

An example:

countZeros(-5 + 5im, 5 - 5im, x -> (x - 2)^3*(x-1))

Documentation

Further documentation can be accessed at the REPL or in IJulia by typing ? followed by the name of the function.

?findZerosWithSubdivision
?countZeros

Related packages

ComplexPortraits.jl Phase portraits for complex functions (helpful for visualising where the zeros are)

Used By Packages

No packages found.