FlexiGroups.jl

Author JuliaAPlavin
Popularity
4 Stars
Updated Last
6 Months Ago
Started In
February 2024

FlexiGroups.jl

Arrange tabular or non-tabular datasets into groups according to a specified key function.

The main principle of FlexiGroups is that the result of a grouping operation is always a collection of groups, and each group is a collection of elements. Groups are typically indexed by the grouping key.

group/groupview/groupmap

group([keyf=identity], X; [restype=Dictionary]): group elements of X by keyf(x), returning a mapping keyf(x) values to lists of x values in each group.

The result is an (ordered) Dictionary by default, but can be changed to the base Dict or another dictionary type.

Alternatively to dictionaries, specifying restype=KeyedArray (from AxisKeys.jl) results in a KeyedArray. Its axiskeys are the group keys.

xs = 3 .* [1, 2, 3, 4, 5]
g = group(isodd, xs)
# g == dictionary([true => [3, 9, 15], false => [6, 12]]) from Dictionaries.jl


g = group(x -> (a=isodd(x),), xs; restype=KeyedArray)
# g == KeyedArray([[6, 12], [3, 9, 15]]; a=[false, true])

groupview([keyf=identity], X; [restype=Dictionary]): like the group function, but each group is a view of X and doesn't copy the input elements.

groupmap([keyf=identity], mapf, X; [restype=Dictionary]): like map(mapf, group(keyf, X)), but more efficient. Supports a limited set of mapf functions: length, first/last, only, rand.

Margins

addmargins(dict; [combine=flatten]): add margins to a grouping for all combinations of group key components.

For example, if a dataset is grouped by a and b (keyf=x -> (;x.a, x.b) in group), this adds groups for each a value and for each b value separately.

combine specifies how multiple groups are combined into margins. The default combine=flatten concatenates all relevant groups into a single collection.

xs = [(a=1, b=:x), (a=2, b=:x), (a=2, b=:y), (a=3, b=:x), (a=3, b=:x), (a=3, b=:x)]

# basic grouping by unique combinations of a and b
g = group(xs)
map(length, g) == dictionary([(a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3])

# add margins
gm = addmargins(g)
map(length, gm) == dictionary([
    (a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3,  # original grouping result
    (a=1, b=total) => 1, (a=2, b=total) => 2, (a=3, b=total) => 3,  # margins for all values of a
    (a=total, b=:x) => 5, (a=total, b=:y) => 1,  # margins for all values of b
    (a=total, b=total) => 6,  # total
])

More examples

Compute the fraction of elements in each group:

julia> using FlexiGroups, DataPipes

julia> x = rand(1:100, 100);

julia> @p x |>
       groupmap(_ % 3, length) |>  # group by x % 3 and compute length of each group
       FlexiGroups.addmargins(combine=sum) |>  # append the margin - here, the total of all group lengths
       __ ./ __[total]  # divide lengths by that total
4-element Dictionaries.Dictionary{Union{Colon, Int64}, Float64}
       20.34
       00.33
       10.33
   total │ 1.0

Perform per-group computations and combine into a single flat collection:

julia> using FlexiGroups, FlexiMaps, DataPipes, StructArrays

julia> x = rand(1:100, 10)
10-element Vector{Int64}:
 70
 57
 57
 69
 61
 74
 31
 39
 48
 96

# regular flatmap: puts all elements of the first group first, then the second, and so on
# the resulting order is different from the original `x` above
julia> @p x |>
       groupview(_ % 3) |>
       flatmap(StructArray(x=_, ind_in_group=eachindex(_)))
10-element StructArray(::Vector{Int64}, ::Vector{Int64}) with eltype NamedTuple{(:x, :ind_in_group), Tuple{Int64, Int64}}:
 (x = 70, ind_in_group = 1)
 (x = 61, ind_in_group = 2)
 (x = 31, ind_in_group = 3)
 (x = 57, ind_in_group = 1)
 (x = 57, ind_in_group = 2)
 (x = 69, ind_in_group = 3)
 (x = 39, ind_in_group = 4)
 (x = 48, ind_in_group = 5)
 (x = 96, ind_in_group = 6)
 (x = 74, ind_in_group = 1)

# flatmap_parent: puts elements in the same order as they were in the parent `x` array above
julia> @p x |>
       groupview(_ % 3) |>
       flatmap_parent(StructArray(x=_, ind_in_group=eachindex(_)))
10-element StructArray(::Vector{Int64}, ::Vector{Int64}) with eltype NamedTuple{(:x, :ind_in_group), Tuple{Int64, Int64}}:
 (x = 70, ind_in_group = 1)
 (x = 57, ind_in_group = 1)
 (x = 57, ind_in_group = 2)
 (x = 69, ind_in_group = 3)
 (x = 61, ind_in_group = 2)
 (x = 74, ind_in_group = 1)
 (x = 31, ind_in_group = 3)
 (x = 39, ind_in_group = 4)
 (x = 48, ind_in_group = 5)
 (x = 96, ind_in_group = 6)

Pivot tables:

julia> using FlexiGroups, DataPipes, StructArrays, AxisKeys

# generate a simple table
julia> x = @p rand(1:100, 100) |> map((value=_, mod3=_ % 3, mod5=_ % 5)) |> StructArray
100-element StructArray(::Vector{Int64}, ::Vector{Int64}, ::Vector{Int64}) with eltype NamedTuple{(:value, :mod3, :mod5), Tuple{Int64, Int64, Int64}}:
 (value = 29, mod3 = 2, mod5 = 4)
 (value = 93, mod3 = 0, mod5 = 3)
 (value = 1, mod3 = 1, mod5 = 1)
 (value = 57, mod3 = 0, mod5 = 2)
 (value = 2, mod3 = 2, mod5 = 2)
 

# compute sum of `value`s grouped by `mod3` and `mod5`
julia> @p x |>
       group((; _.mod3, _.mod5); restype=KeyedArray) |>
       map(sum(_.value))
2-dimensional KeyedArray(NamedDimsArray(...)) with keys:
   mod3  3-element Vector{Int64}
   mod5  5-element Vector{Int64}
And data, 3×5 Matrix{Int64}:
      (0)  (1)  (2)  (3)  (4)
 (0)  390  372  378  258  225
 (1)  480  247  372  187  362
 (2)  475   82  352  318  203

Alternatives

  • SplitApplyCombine.jl also provides group and groupview functions with similar basic semantics. Notable differences of FlexiGroups include:
    • margins support;
    • more flexibility in the return container type - various dictionaries, keyed arrays;
    • group collection type is the same as the input collection type, when possible; for example, grouping a StructArrays results in each group also being a StructArray;
    • better return eltype and type inference;
    • often performs faster and with fewer allocations.