Arrange tabular or non-tabular datasets into groups according to a specified key function.
The main principle of FlexiGroups
is that the result of a grouping operation is always a collection of groups, and each group is a collection of elements. Groups are typically indexed by the grouping key.
group([keyf=identity], X; [restype=Dictionary])
: group elements of X
by keyf(x)
, returning a mapping keyf(x)
values to lists of x
values in each group.
The result is an (ordered) Dictionary
by default, but can be changed to the base Dict
or another dictionary type.
Alternatively to dictionaries, specifying restype=KeyedArray
(from AxisKeys.jl
) results in a KeyedArray
. Its axiskeys
are the group keys.
xs = 3 .* [1, 2, 3, 4, 5]
g = group(isodd, xs)
# g == dictionary([true => [3, 9, 15], false => [6, 12]]) from Dictionaries.jl
g = group(x -> (a=isodd(x),), xs; restype=KeyedArray)
# g == KeyedArray([[6, 12], [3, 9, 15]]; a=[false, true])
groupview([keyf=identity], X; [restype=Dictionary])
: like the group
function, but each group is a view
of X
and doesn't copy the input elements.
groupmap([keyf=identity], mapf, X; [restype=Dictionary])
: like map(mapf, group(keyf, X))
, but more efficient. Supports a limited set of mapf
functions: length
, first
/last
, only
, rand
.
addmargins(dict; [combine=flatten])
: add margins to a grouping for all combinations of group key components.
For example, if a dataset is grouped by a
and b
(keyf=x -> (;x.a, x.b)
in group
), this adds groups for each a
value and for each b
value separately.
combine
specifies how multiple groups are combined into margins. The default combine=flatten
concatenates all relevant groups into a single collection.
xs = [(a=1, b=:x), (a=2, b=:x), (a=2, b=:y), (a=3, b=:x), (a=3, b=:x), (a=3, b=:x)]
# basic grouping by unique combinations of a and b
g = group(xs)
map(length, g) == dictionary([(a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3])
# add margins
gm = addmargins(g)
map(length, gm) == dictionary([
(a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3, # original grouping result
(a=1, b=total) => 1, (a=2, b=total) => 2, (a=3, b=total) => 3, # margins for all values of a
(a=total, b=:x) => 5, (a=total, b=:y) => 1, # margins for all values of b
(a=total, b=total) => 6, # total
])
Compute the fraction of elements in each group:
julia> using FlexiGroups, DataPipes
julia> x = rand(1:100, 100);
julia> @p x |>
groupmap(_ % 3, length) |> # group by x % 3 and compute length of each group
FlexiGroups.addmargins(combine=sum) |> # append the margin - here, the total of all group lengths
__ ./ __[total] # divide lengths by that total
4-element Dictionaries.Dictionary{Union{Colon, Int64}, Float64}
2 │ 0.34
0 │ 0.33
1 │ 0.33
total │ 1.0
Perform per-group computations and combine into a single flat collection:
julia> using FlexiGroups, FlexiMaps, DataPipes, StructArrays
julia> x = rand(1:100, 10)
10-element Vector{Int64}:
70
57
57
69
61
74
31
39
48
96
# regular flatmap: puts all elements of the first group first, then the second, and so on
# the resulting order is different from the original `x` above
julia> @p x |>
groupview(_ % 3) |>
flatmap(StructArray(x=_, ind_in_group=eachindex(_)))
10-element StructArray(::Vector{Int64}, ::Vector{Int64}) with eltype NamedTuple{(:x, :ind_in_group), Tuple{Int64, Int64}}:
(x = 70, ind_in_group = 1)
(x = 61, ind_in_group = 2)
(x = 31, ind_in_group = 3)
(x = 57, ind_in_group = 1)
(x = 57, ind_in_group = 2)
(x = 69, ind_in_group = 3)
(x = 39, ind_in_group = 4)
(x = 48, ind_in_group = 5)
(x = 96, ind_in_group = 6)
(x = 74, ind_in_group = 1)
# flatmap_parent: puts elements in the same order as they were in the parent `x` array above
julia> @p x |>
groupview(_ % 3) |>
flatmap_parent(StructArray(x=_, ind_in_group=eachindex(_)))
10-element StructArray(::Vector{Int64}, ::Vector{Int64}) with eltype NamedTuple{(:x, :ind_in_group), Tuple{Int64, Int64}}:
(x = 70, ind_in_group = 1)
(x = 57, ind_in_group = 1)
(x = 57, ind_in_group = 2)
(x = 69, ind_in_group = 3)
(x = 61, ind_in_group = 2)
(x = 74, ind_in_group = 1)
(x = 31, ind_in_group = 3)
(x = 39, ind_in_group = 4)
(x = 48, ind_in_group = 5)
(x = 96, ind_in_group = 6)
Pivot tables:
julia> using FlexiGroups, DataPipes, StructArrays, AxisKeys
# generate a simple table
julia> x = @p rand(1:100, 100) |> map((value=_, mod3=_ % 3, mod5=_ % 5)) |> StructArray
100-element StructArray(::Vector{Int64}, ::Vector{Int64}, ::Vector{Int64}) with eltype NamedTuple{(:value, :mod3, :mod5), Tuple{Int64, Int64, Int64}}:
(value = 29, mod3 = 2, mod5 = 4)
(value = 93, mod3 = 0, mod5 = 3)
(value = 1, mod3 = 1, mod5 = 1)
(value = 57, mod3 = 0, mod5 = 2)
(value = 2, mod3 = 2, mod5 = 2)
⋮
# compute sum of `value`s grouped by `mod3` and `mod5`
julia> @p x |>
group((; _.mod3, _.mod5); restype=KeyedArray) |>
map(sum(_.value))
2-dimensional KeyedArray(NamedDimsArray(...)) with keys:
↓ mod3 ∈ 3-element Vector{Int64}
→ mod5 ∈ 5-element Vector{Int64}
And data, 3×5 Matrix{Int64}:
(0) (1) (2) (3) (4)
(0) 390 372 378 258 225
(1) 480 247 372 187 362
(2) 475 82 352 318 203
SplitApplyCombine.jl
also providesgroup
andgroupview
functions with similar basic semantics. Notable differences ofFlexiGroups
include:- margins support;
- more flexibility in the return container type - various dictionaries, keyed arrays;
- group collection type is the same as the input collection type, when possible; for example, grouping a
StructArray
s results in each group also being aStructArray
; - better return eltype and type inference;
- often performs faster and with fewer allocations.