FunctionalDataUtils.jl

Utility functions for the FunctionalData package, mainly from the area of computer vision / machine learning
Popularity
7 Stars
Updated Last
1 Year Ago
Started In
January 2015

FunctionalDataUtils

Build Status Build Status Build Status Build Status

Utility functions based on FunctionData.jl, mostly from the area of computer vision and machine learning.

Numerical

normsum, normsum!                   # normalize sum to 1
norm01, norm01!                     # normalize to the range 0..1
normeuclid, normeuclid!             # normalize to L2 norm == 1
normmean, normmean!                 # normalize to mean == 0
normmeanstd, normmeanstd!           # normalize to mean == 0, std == 1
normunique(a)                       # replace items with indices to unique(a)
valuemap(a, mapping)                # look up  non-NaNs of a in mapping
pcawhitening                        # perform PCA whitening
zcawhitening                        # perform ZCA whitening
clamp(a, mi, ma)                    # clamp every item to min mi and max ma
nanfunction(f,a,d)                  # apply function f along dim d to non-nan elements of a
nanmean(a,d)                        # mean ignoring NaNs
nanstd(a,d)                         # std ignoring NaNs
nanmedian(a,d)                      # median ignoring NaNs
distance(a[,b])                     # L2 norm between all items in a and b

Computer Vision

iimg(a)                             # integral image / volume
iimg!(a)                            # integral image / volume
interp3(a,m,n,o)                    # interpolate a at m,n,o
interp3with01coords(a,m,n,o)        # interpolate a using 0..1 coords
resize(a,siz)                       # resize a 
resizeminmax(a, mi, ma)             # resize a to fit within mi and ma sizes
grid
meshgrid
meshgrid3
centeredgrid
centeredmeshgrid
overlaygradient
toranges
tosize
tosize3
imregionalmin
imregionalmax
monogen
bwlabel
bwlabel!
monoslic
border
bwdist                                      # 
rle(a)                                      # run length encoding
unrle(a)                                    # run lendth decoding
reshape
stridedblockcoords(a, blocksiz, stide)      # return tuples of ranges for each subblock
inpolygon(point, polygon)                   # is point inside polygon? 
inpointcloud(point, cloud)                  # is point inside pointcloud?

Computing

@timedone
fasthash
cache
dictcache
loadedmodules
reloadmodules

Graphics

jetcolormap(n)                      # 3 x n jet colormap like in Matlab
asimagesc(a)                        # m x n x 3 RGB array with image like Matlab's imagesc
blocksvisu(a)                       # visualization of patches / blocks