[WORK IN PROGRESS] This Julia package solves
a x + b x (c ⊗ c ⊗ ... ⊗ c) = d
by using
(I + c^T ⊗ c^T ⊗ ... ⊗ c^T ⊗ b)x = d
The package requires Julia 1.6.3 or higher
using Pkg
Pkg.add("GeneralizedSylvesterSolver")
ws = IPlusAtKronBWs(ma, mb, mc, order)
generalized_sylvester_solver!(a::AbstractMatrix, b::AbstractMatrix, c::AbstractMatrix,
d::AbstractMatrix, order::Int64, ws::IPlusAtKronBWs)
whith
a
is a ma x na matrixb
is a mb x nb matrixc
is a mc x nc matrixd
is a md x nd matrixorder
is an integer representing the number of occurences ofc^T
in the Kronecker productsws
is an instance of theIPlusAtKronBWs
type
- 0.1.1
O. Kamenik (2005), "Solving SDGE models: A new algorithm for the Sylvester equation", Computational Economics 25, 167--187.