ITensorChemistry.jl

Add-on package to ITensors.jl for chemistry.
Author ITensor
Popularity
18 Stars
Updated Last
4 Months Ago
Started In
January 2022

ITensorChemistry.jl

Stable Dev Build Status Coverage Code Style: Blue

Overview

The main functionality of this package is outputting a second quantized quantum chemistry Hamiltonian in the molecular orbital basis, given a molecule and atomic orbital basis.

Under the hood, the package uses Hartree-Fock implemented in PySCF, which we call using PythonCall.jl, to obtain the molecular orbital basis and one-electron and two-electron integrals.

The main output is an OpSum from ITensors.jl, which is a representation of the second quantized Hamiltonian. This can be converted into a variety of other formats, such as a matrix product operator (MPO) to run DMRG, quantum circuit, full matrix representation for exact diagonalization (ED) for full configuration interaction (FCI) calculations, etc.

Installation

julia> using Pkg

julia> Pkg.add(; url="https://github.com/mtfishman/ITensorChemistry.jl")

Examples

Dissociation energies

using ITensors, ITensorMPS
using ITensorChemistry
using Plots

function energy_at_bond(r)
  # define molecule geometry
  molecule = Molecule([("H", 0.0, 0.0, 0.0), 
                       ("H",   r, 0.0, 0.0)])
  
  # build electronic hamiltonian and solve HF
  hf = molecular_orbital_hamiltonian(molecule; basis="sto-3g")
  hamiltonian = hf.hamiltonian
  hartree_fock_state = hf.hartree_fock_state
  hartree_fock_energy = hf.hartree_fock_energy

  # hilbert space
  s = siteinds("Electron", 2; conserve_qns=true)

  H = MPO(hamiltonian, s)
  
  # initialize MPS to HF state
  ψhf = MPS(s, hartree_fock_state)
  
  # run dmrg
  dmrg_kwargs = (;
    nsweeps=10,
    maxdim=[10,20,30,40,50,100],
    cutoff=1e-8,
    noise=[1e-6, 1e-7, 1e-8, 0.0],
  )
  dmrg_energy, _ = dmrg(H, ψhf; nsweeps=10, outputlevel=0)
  return hartree_fock_energy, dmrg_energy
end

# bond distances
r⃗ = 0.3:0.03:3.0

energies = []
for r in r⃗
  push!(energies, energy_at_bond(r))
end

Jordan-Wigner transformation

using ITensors, ITensorMPS
using ITensorChemistry

# Nitrogen molecule
molecule = Molecule("N₂")
basis = "sto-3g"
@show molecule

hf = molecular_orbital_hamiltonian(molecule; basis);
hamiltonian = hf.hamiltonian;
hartree_fock_state = hf.hartree_fock_state

println("Number of orbitals = ", length(hartree_fock_state))
@show hamiltonian[end];
println("Number of fermionic operators = ", length(hamiltonian))
println("Hartree-Fock state |HF⟩ = |", prod(string.(hartree_fock_state)),"")

qubit_hamiltonian = jordanwigner(hamiltonian);
qubit_state = jordanwigner(hartree_fock_state)
@show qubit_hamiltonian[end];
println("Number of qubit operators = ", length(qubit_hamiltonian))
println("Hartree-Fock state |HF⟩ = |", prod(string.(qubit_state)),"") 
# -------------------------------------------------------------------------- 
#  molecule = Molecule
#   Atom 1: N,   r⃗ = (0.0, 0.0, 0.550296)
#   Atom 2: N,   r⃗ = (0.0, 0.0, -0.550296)
#  Number of orbitals = 10
#  Number of fermionic operators = 14181
#  |HF⟩ = |4444444111⟩
#  Number of qubit operators = 17005
#  |HF⟩ = |22222222222222111111⟩