JacobiElliptic.jl

Elliptic integrals and Jacobi elliptic functions that are GPU friendly and auto differentiable
Author dominic-chang
Popularity
7 Stars
Updated Last
11 Days Ago
Started In
December 2022

JacobiElliptic

JacobiElliptic is an implementation of Toshio Fukushima's & Billie C. Carlson's for calculating Elliptic Integrals and Jacobi Elliptic Functions. The default algorithms are set to the Carlson algorithms.

Features

Documentation

Dev

Repo Status

Build Status Coverage

Incomplete Elliptic Integrals

Function Definition
F(φ, m) $F(\phi|m)$: Incomplete elliptic integral of the first kind
E(φ, m) $E(\phi|m)$: Incomplete elliptic integral of the second kind
Pi(n, φ, m) $\Pi(n;\,\phi|\, m)$: Incomplete elliptic integral of the third kind
J(n, φ, m) $J (n;\, \phi |\,m)=\frac{\Pi(n;\,\phi|\, m) - F(\phi,m)}{n}$: Associated incomplete elliptic integral of the third kind

Complete Elliptic Integrals

Function Definition
K(m) $K(m)$: Complete elliptic integral of the first kind
E(m) $E(m)$: Complete elliptic integral of the second kind
Pi(n, m) $\Pi(n|\, m)$: Complete elliptic integral of the third kind
J(n, m) $J (n|\,m)=\frac{\Pi(n|\, m) - K(m)}{n}$: Associated incomplete elliptic integral of the third kind

Jacobi Elliptic Functions

Function Definition
sn(u, m) $\text{sn}(u | m) = \sin(\text{am}(u | m))$
cn(u, m) $\text{cn}(u | m) = \cos(\text{am}(u | m))$
asn(u, m) $\text{asn}(u | m) = \text{sn}^{-1}(u | m)$
acn(u, m) $\text{acn}(u | m) = \text{cn}^{-1}(u | m)$

Used By Packages