KNITRO.jl is a wrapper for the Artelys Knitro solver.
It has two components:
- a thin wrapper around the C API
- an interface to MathOptInterface.
KNITRO.jl v0.14.0 introduced a number of breaking changes to the low-level C API. See the Low-level wrapper section for details.
This wrapper is maintained by the JuMP community with help from Artelys.
Contact Artelys support if you encounter any problem with this interface or the solver.
KNITRO.jl
is licensed under the MIT License.
The underlying solver is a closed-source commercial product for which you must purchase a license.
First, obtain a license and install a copy of KNITRO from Artelys.
Then, install KNITRO.jl
using the Julia package manager:
import Pkg
Pkg.add("KNITRO")
If you are having trouble installing KNITRO.jl, here are several things to try:
- Make sure that you have defined your global variables correctly, for example
with
export KNITRODIR="/path/to/knitro-vXXX-$OS-64"
andexport LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$KNITRODIR/lib"
. You can check thatKNITRO.jl
sees your library withusing KNITRO; KNITRO.has_knitro()
. - If
KNITRO.has_knitro()
returnsfalse
but you are confident that your paths are correct, try runningPkg.build("KNITRO")
and restarting Julia. In at least one user's experience, installing and using KNITRO in a temporary Julia environment (activated with] activate --temp
) does not work and the need to manually build is likely the reason why.
To use KNITRO with JuMP, use KNITRO.Optimizer
:
using JuMP, KNITRO
model = Model(KNITRO.Optimizer)
set_attribute(model, "outlev", 1)
set_attribute(model, "algorithm", 4)
To use KNITRO's license manager, do:
using JuMP, KNITRO
manager = KNITRO.LMcontext()
model_1 = Model(() -> KNITRO.Optimizer(; license_manager = manager))
model_2 = Model(() -> KNITRO.Optimizer(; license_manager = manager))
To use KNITRO with AmplNLWriter.jl,
use KNITRO.amplexe
:
using JuMP
import AmplNLWriter
import KNITRO
model = Model(() -> AmplNLWriter.Optimizer(KNITRO.amplexe, ["outlev=3"]))
A variety of packages extend KNITRO.jl to support other optimization modeling systems. These include:
The Knitro optimizer supports the following constraints and attributes.
List of supported objective functions:
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}
MOI.ObjectiveFunction{MOI.ScalarNonlinearFunction}
MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}
MOI.ObjectiveFunction{MOI.VariableIndex}
List of supported variable types:
List of supported constraint types:
MOI.ScalarAffineFunction{Float64}
inMOI.EqualTo{Float64}
MOI.ScalarAffineFunction{Float64}
inMOI.GreaterThan{Float64}
MOI.ScalarAffineFunction{Float64}
inMOI.Interval{Float64}
MOI.ScalarAffineFunction{Float64}
inMOI.LessThan{Float64}
MOI.ScalarNonlinearFunction
inMOI.EqualTo{Float64}
MOI.ScalarNonlinearFunction
inMOI.GreaterThan{Float64}
MOI.ScalarNonlinearFunction
inMOI.Interval{Float64}
MOI.ScalarNonlinearFunction
inMOI.LessThan{Float64}
MOI.ScalarQuadraticFunction{Float64}
inMOI.EqualTo{Float64}
MOI.ScalarQuadraticFunction{Float64}
inMOI.GreaterThan{Float64}
MOI.ScalarQuadraticFunction{Float64}
inMOI.Interval{Float64}
MOI.ScalarQuadraticFunction{Float64}
inMOI.LessThan{Float64}
MOI.VariableIndex
inMOI.EqualTo{Float64}
MOI.VariableIndex
inMOI.GreaterThan{Float64}
MOI.VariableIndex
inMOI.Integer
MOI.VariableIndex
inMOI.Interval{Float64}
MOI.VariableIndex
inMOI.LessThan{Float64}
MOI.VariableIndex
inMOI.ZeroOne
MOI.VectorAffineFunction{Float64}
inMOI.SecondOrderCone
MOI.VectorOfVariables
inMOI.Complements
MOI.VectorOfVariables
inMOI.SecondOrderCone
List of supported model attributes:
A list of available options is provided in the KNITRO reference manual.
The complete C API can be accessed via KNITRO.KN_xx
functions, where the names
and arguments are identical to the C API.
See the KNITRO documentation for details.
As general rules when converting from Julia to C:
- When KNITRO requires a
Ptr{T}
that holds one element, likedouble *
, use aRef{T}()
. - When KNITRO requires a
Ptr{T}
that holds multiple elements, use aVector{T}
. - When KNITRO requires a
double
, useCdouble
- When KNITRO requires an
int
, useCint
- When KNITRO requires a
NULL
, useC_NULL
Extensive examples using the C wrapper can be found in examples/
.
KNITRO.jl v0.14.0 introduced a number of breaking changes to the low-level C API. The main changes were:
- removing Julia-specific functions like
KN_set_param
. Use the C API functions likeKN_set_int_param
andKN_set_double_param_by_name
. - removing intermediate methods that tried to make the C API more Julia-like.
For example, we have removed the
KN_add_var
method that returned the index of the variable. There is now only the method from the C API.
If you have trouble updating, please open a GitHub issue.
Due to limitations in the interaction between Julia and C, KNITRO.jl disables
multi-threading if the problem is nonlinear. This will override any options such
as par_numthreads
that you may have set.
If you are using the low-level API, opt-in to enable multi-threading by calling
KN_solve(model.env)
instead of KN_solve(model)
, where model
is the value
returned by model = KN_new()
. Note that calling KN_solve(model.env)
is an
advanced operation because it requires all callbacks you provide to be threadsafe.
Read GitHub issue #93 for more details.