LightGraphsGraphBLAS.jl

GraphBLAS backed graphs for LightGraphs.jl
Popularity
6 Stars
Updated Last
2 Years Ago
Started In
July 2019

Build Status

LightGraphsGraphBLAS.jl

The edge weights can be of type Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Float32 or Float64 (i.e., the GraphBLAS predefined types). User-defined types are not supported.

Examples

julia> using GraphBLASInterface, SuiteSparseGraphBLAS, LightGraphsGraphBLAS, LightGraphs

julia> GrB_init(GrB_NONBLOCKING)
GrB_SUCCESS::GrB_Info = 0

julia> g = BLASGraph{Int64}(5)    # edge weights are of type Int64, the eltype for all graphs is UInt64 and cannot be changed
{5, 0} undirected graph

julia> add_edge!(g, 2, 4, 5)
true

julia> add_edge!(g, 1, 2, 7)
true

julia> foreach(println, edges(g))
Edge 1 => 2 with weight 7
Edge 2 => 4 with weight 5

julia> rem_edge!(g, 2, 4)
true

julia> foreach(println, edges(g))
Edge 1 => 2 with weight 7

julia> add_edge!(g, 1, 2, 9)    # reweight the edge
true

julia> foreach(println, edges(g))
Edge 1 => 2 with weight 9

Create graph from AbstractSimpleGraph :

julia> g = BLASDiGraph(SimpleDiGraph(5, 6))
{5, 6} directed graph

julia> foreach(println, edges(g))
Edge 1 => 3 with weight 1
Edge 1 => 4 with weight 1
Edge 1 => 5 with weight 1
Edge 2 => 5 with weight 1
Edge 3 => 5 with weight 1
Edge 4 => 2 with weight 1

Create graph from GraphBLAS matrix :

julia> I = OneBasedIndex[1, 2, 3]; J = OneBasedIndex[2, 3, 1]; X = Float64[7.2, 3.4, 5.6];

julia> M = GrB_Matrix(I, J, X)
GrB_Matrix{Float64}

julia> g = BLASDiGraph(M)
{3, 3} directed graph

julia> foreach(println, edges(g))
Edge 1 => 2 with weight 7.2
Edge 2 => 3 with weight 3.4
Edge 3 => 1 with weight 5.6

julia> outneighbors(g, 1)    # vertices of the graph are always of type UInt64 since they are indices of a GraphBLAS matrix
1-element Array{UInt64,1}:
 0x0000000000000002

julia> inneighbors(g, 1)
1-element Array{UInt64,1}:
 0x0000000000000003

Create a graph from edge list :

julia> e1 = SimpleWeightedEdge(1, 2, Int32(4))
Edge 1 => 2 with weight 4

julia> e2 = SimpleWeightedEdge(2, 4, Int32(8))
Edge 2 => 4 with weight 8

julia> edge_list = [e1, e2]
2-element Array{SimpleWeightedEdge{Int64,Int32},1}:
 Edge 1 => 2 with weight 4
 Edge 2 => 4 with weight 8

julia> g = BLASGraph(edge_list)
{4, 2} undirected graph

julia> get_weight(g, 1, 2)
4

Create a graph from adjacency matrix :

julia> A = [0 1 1; 1 0 0; 0 1 0]
3×3 Array{Int64,2}:
 0  1  1
 1  0  0
 0  1  0

julia> g = BLASDiGraph(A)
{3, 4} directed graph

julia> indegree(g, 1)
1

julia> outdegree(g, 1)
2

julia> using SparseArrays

julia> B = sparse(A)
3×3 SparseMatrixCSC{Int64,Int64} with 4 stored entries:
  [2, 1]  =  1
  [1, 2]  =  1
  [3, 2]  =  1
  [1, 3]  =  1

julia> g = BLASDiGraph(B)
{3, 4} directed graph

Benchmarks

On 6 cores -

gdistances (algorithm: bfs_simple) :

julia> using GraphBLASInterface, SuiteSparseGraphBLAS, LightGraphsGraphBLAS, LightGraphs, MatrixDepot, BenchmarkTools, SNAPDatasets

julia> md = mdopen("DIMACS10/caidaRouterLevel");

julia> A = md.A

julia> lg = SimpleGraph(A)
{192244, 609066} undirected simple Int64 graph

julia> GrB_init(GrB_NONBLOCKING)
GrB_SUCCESS::GrB_Info = 0

julia> bg = BLASGraph(lg)
{192244, 609066} undirected graph

julia> @benchmark gdistances(lg, source) setup = (source = rand(1:nv(lg)))
BenchmarkTools.Trial: 
  memory estimate:  4.42 MiB
  allocs estimate:  9
  --------------
  minimum time:     159.524 μs (0.00% GC)
  median time:      29.321 ms (0.00% GC)
  mean time:        29.411 ms (0.00% GC)
  maximum time:     34.208 ms (0.00% GC)
  --------------
  samples:          170
  evals/sample:     1

julia> @benchmark gdistances(bg, source) setup = (source = rand(1:nv(bg)))
BenchmarkTools.Trial: 
  memory estimate:  2.55 KiB
  allocs estimate:  95
  --------------
  minimum time:     42.370 ms (0.00% GC)
  median time:      45.216 ms (0.00% GC)
  mean time:        45.386 ms (0.00% GC)
  maximum time:     53.582 ms (0.00% GC)
  --------------
  samples:          111
  evals/sample:     1

julia> lg = loadsnap(:soc_slashdot0902_u)
{82168, 582533} undirected simple Int64 graph

julia> bg = BLASGraph(lg)
{82168, 582533} undirected graph

julia> @benchmark gdistances(lg, source) setup = (source = rand(1:nv(lg)))
BenchmarkTools.Trial: 
  memory estimate:  1.89 MiB
  allocs estimate:  8
  --------------
  minimum time:     9.511 ms (0.00% GC)
  median time:      10.535 ms (0.00% GC)
  mean time:        10.542 ms (0.20% GC)
  maximum time:     12.301 ms (0.00% GC)
  --------------
  samples:          473
  evals/sample:     1

julia> @benchmark gdistances(bg, source) setup = (source = rand(1:nv(bg)))
BenchmarkTools.Trial: 
  memory estimate:  1.56 KiB
  allocs estimate:  60
  --------------
  minimum time:     16.929 ms (0.00% GC)
  median time:      20.320 ms (0.00% GC)
  mean time:        20.280 ms (0.00% GC)
  maximum time:     35.234 ms (0.00% GC)
  --------------
  samples:          247
  evals/sample:     1

julia> lg = loadsnap(:facebook_combined)
{4039, 88234} undirected simple Int64 graph

julia> bg = BLASGraph(lg)
{4039, 88234} undirected graph

julia> @benchmark gdistances(lg, source) setup = (source = rand(1:nv(lg)))
BenchmarkTools.Trial: 
  memory estimate:  95.69 KiB
  allocs estimate:  8
  --------------
  minimum time:     425.521 μs (0.00% GC)
  median time:      429.602 μs (0.00% GC)
  mean time:        442.115 μs (0.29% GC)
  maximum time:     1.709 ms (62.72% GC)
  --------------
  samples:          10000
  evals/sample:     1

julia> @benchmark gdistances(bg, source) setup = (source = rand(1:nv(bg)))
BenchmarkTools.Trial: 
  memory estimate:  1.13 KiB
  allocs estimate:  44
  --------------
  minimum time:     662.463 μs (0.00% GC)
  median time:      1.472 ms (0.00% GC)
  mean time:        1.478 ms (0.00% GC)
  maximum time:     10.979 ms (0.00% GC)
  --------------
  samples:          3313
  evals/sample:     1

Used By Packages

No packages found.