Modal interval arithmetic using algorithms defined in Chapter 5 of the book Modal Interval Analysis: New Tools for Numerical Information, by Miguel Sainz.
Instantiate modal intervals of the form ModalInterval{T<:Real} <: Number
using the following constructors
ModalInterval(a::Real, b::Real)
constructs a modal interval [a, b]
ModalInterval{T}(a::Real)
constructs a modal interval [a, a]
representing a real number, cast to type T
ModalInterval(a::Real)
constructs a modal interval [a, a]
representing a real number
ModalInterval(X::Interval)
constructs a proper modal interval from classical interval X
ModalInterval{T}(X::Interval)
constructs a proper modal interval from classical interval X
, with endpoints cast to type T
ModalInterval{T}(X::ModalInterval)
Julia operations are overloaded to support ModalInterval
.
- Extend modal intervals to additional unary/binary operations (trig., exp.).
- Implement AE-extensions of real functions.
- Automatic inner and outer roundings of intervals.
Miguel Sainz et al. 2014. Modal Interval Analysis: New Tools for Numerical Information. Springer Lecture Notes in Mathematics, New York, NY. PDF:https://www.springer.com/gp/book/9783319017204