This package provides support for working with sparse multivariate polynomials in Julia.
This package is superseded by MultivariatePolynomials.jl and is no longer maintained.
In the Julia REPL run
Pkg.add("MultiPoly")
Multivariate polynomials are stored in the type
struct MPoly{T}
terms::OrderedDict{Vector{Int},T}
vars::Vector{Symbol}
end
Here each item in the dictionary terms
corresponds to a term in the polynomial, where the key represents the monomial powers and the value the coefficient of the monomial. Each of the keys in terms
should be a vector of integers whose length equals length(vars)
.
For constructing polynomials you can use the generators of the polynomial ring:
julia> using MultiPoly
julia> x, y = generators(MPoly{Float64}, :x, :y);
julia> p = (x+y)^3
MultiPoly.MPoly{Float64}(x^3 + 3.0x^2*y + 3.0x*y^2 + y^3)
For the zero and constant one polynomials use
zero(MPoly{Float64})
one(MPoly{Float64})
where you can optionally supply the variables of the polynomials with vars = [:x, :y]
.
Alternatively you can construct a polynomial using a dictionary for the terms:
MPoly{Float64}(terms, vars)
For example, to construct the polynomial 1 + x^2 + 2x*y^3
use
julia> using MultiPoly, DataStructures
julia> MPoly{Float64}(OrderedDict([0,0] => 1.0, [2,0] => 1.0, [1,3] => 2.0), [:x, :y])
MultiPoly.MPoly{Float64}(1.0 + x^2 + 2.0x*y^3)
Laurent polynomials may be constructed too:
x^1 * y^2 + x^1 * y^(-2) + x^(-1) * y^2 + x^(-1) * y^(-2)
The usual ring arithmetic is supported and MutliPoly will automatically deal with polynomials in different variables or having a different coefficient type. Examples:
julia> using MultiPoly
julia> x, y = generators(MPoly{Float64}, :x, :y);
julia> z = generator(MPoly{Int}, :z)
MPoly{Int64}(z)
julia> x+z
MPoly{Float64}(x + z)
julia> vars(x+z)
3-element Array{Symbol,1}:
:x
:y
:z
To evaluate a polynomial P(x,y, ...) at a point (x0, y0, ...) the evaluate
function is used. Example:
julia> p = (x+x*y)^2
MultiPoly.MPoly{Float64}(x^2 + 2.0x^2*y + x^2*y^2)
julia> evaluate(p, 3.0, 2.0)
81.0
MultiPoly supports integration and differentiation. Currently the integrating constant is set to 0. Examples:
julia> p = x^4 + y^4
MultiPoly.MPoly{Float64}(x^4 + y^4)
julia> diff(p, :x)
MultiPoly.MPoly{Float64}(4.0x^3)
julia> diff(p, :y, 3)
MultiPoly.MPoly{Float64}(24.0y)
julia> integrate(p, :x, 2)
MultiPoly.MPoly{Float64}(0.03333333333333333x^6 + 0.5x^2*y^4)
Integrations which would involve integrating a term with a -1 power
raise an error. This example can be intergrated once, but not twice, in
:x
and can't be integrated in :y
:
julia> q = x^(-2) * y^(-1);
julia> integrate(q, :y)
ERROR: ArgumentError: can't integrate 1 times in y as it would involve a -1 power requiring a log term