NaturalES.jl

Simple julia Natural Evolution Strategies implementation
Author francescoalemanno
Popularity
14 Stars
Updated Last
12 Months Ago
Started In
April 2020

NaturalES.jl

Lifecycle Build Status codecov.io

This package implements the optimization methods described in Wierstra, et al "Natural Evolution Strategies", JMLR (2014). this implementation follows the KISS™ principle, it can be used as

Usage

function rosenbrock(x::AbstractVector{T}) where T
    s=(1.0 - x[1])^2
    for i in 1:(length(x)-1)
        s+=100.0 * (x[i+1] - x[i]^2)^2
    end
    return s
end

optimize(rosenbrock,[0.3,0.6],1.0,sNES) # separable natural es.

(sol = [0.9999902815083116, 0.9999805401026993], cost = 9.450201922031972e-11)


optimize(rosenbrock,[0.3,0.6],1.0,xNES) # exponential natural es.

(sol = [0.9999999934969991, 0.9999999871800216], cost = 4.574949214506023e-17)

for further info in Julia type ?optimize, to see

optimize(f, μ, σ, [method=sNES;options...])

minimizes the function f according to:

`f` : function to optimize
    μ::Vector -> cost::Real
`μ` : initial condition
    μ::Vector
`σ` : initial uncertainty on μ
    σ::{Real | Vector | Matrix}
`method` : xNES or sNES
    xNES = exponential evolution strategies, expensive but powerful on non separable objective
    sNES = separable evolution strategies, lightweight very powerful for separable or very high dimensional objectives
`options` :
         ημ = learning rate for μ,
         ησ = learning rate for uncertainties,
       atol = tolerance on uncertainties (default 1e-8),
    samples = number of samples used to build Natural Gradient approximation,
    iterations = upper limit on the number of iterations, default 10^4)

Tips:

  • Use xNES for hard problems with strongly correlated variables
  • Use sNES for high dimensional problems that exhibit many local minima
  • Use sNES for problems with mostly separable variables

Other packages

look at the excellent BlackBoxOptim, or Optim