RationalGenerators.jl

Iterate positive rational numbers without repetition
Author scheinerman
Popularity
4 Stars
Updated Last
1 Year Ago
Started In
March 2023

RationalGenerators

This module provides iterators for creating positive rational numbers without repetition.

  • Use RationalGenerator(n) to create all rational numbers of the form a//b where a and b are relatively prime and a+b ≤ n.
  • Use RationalGenerator() to create all rational numbers.

Order

The first rational number produced is 1//1. Then 1//2 and 2//1. Then, for n equal to 4 and up, we have, in increasing order, the rational numbers of the form a//b where a+b = n and gcd(a,b) = 1.

This figure illustrates the order in which rational numbers are generated:

Examples

julia> using RationalGenerators

julia> collect(RationalGenerator(5))'
1×9 adjoint(::Vector{Rational{Int64}}) with eltype Rational{Int64}:
 1//1  1//2  2//1  1//3  3//1  1//4  2//3  3//2  4//1

julia> [r for r in RationalGenerator(7) if r < 1]'
1×8 adjoint(::Vector{Rational{Int64}}) with eltype Rational{Int64}:
 1//2  1//3  1//4  2//3  1//5  1//6  2//5  3//4

julia> sum(RationalGenerator(9))
8899//168

julia> for r in RationalGenerator()
            if r > 8//3
                println(r)
                break
            end
        end
3//1

julia> [t for t in RationalGenerator(20) if denominator(t) == 10]
4-element Vector{Rational{Int64}}:
 1//10
 3//10
 7//10
 9//10

Small Rationals

To generate rational numbers (without repetition) restricted to the interval (0,1], use SmallRationalGenerator.

  • SmallRationalGenerator(last_den) generates all rationals in (0,1] whose denominators are at most last_den.
  • SmallRationalGenerator() generates all rationals in (0,1].

SmallRatGen is an abbreviation for SmallRationalGenerator.

The rationals are produced with successively larger denominators, starting with 1, and then successively larger numerators.

julia> collect(SmallRatGen(6))'
1×12 adjoint(::Vector{Rational{Int64}}) with eltype Rational{Int64}:
 1//1  1//2  1//3  2//3  1//4  3//4  1//5  2//5  3//5  4//5  1//6  5//6

julia> [t for t in SmallRatGen(10) if denominator(t) == 9]
6-element Vector{Rational{Int64}}:
 1//9
 2//9
 4//9
 5//9
 7//9
 8//9

To create rationals strictly between 0 and 1, one can do this:

julia> X = (t for t in SmallRatGen(4) if t<1);

julia> collect(X)'
1×5 adjoint(::Vector{Rational{Int64}}) with eltype Rational{Int64}:
1//2  1//3  2//3  1//4  3//4

Negative Argument

For both RationalGenerator and SmallRationalGenerator, a negative argument creates an infinite generator. That is, RationalGenerator(-1) has the same effect as RationalGenerator().

Used By Packages

No packages found.