RobustTDA.jl provides a robust and flexible framework for computing persistent homology from point-cloud data in the presence of noise. RobustTDA uses the blazing fast backend for computing persistent homology.
Please see the for further information, usage and examples.
From the Julia REPL, type ] to enter the Pkg REPL mode and run
pkg> add https://github.com/sidv23/RobustTDA.jlGenerate some data
using RobustTDA
using Pipe
# Signal from a circle with noise
signal = 2 .* randCircle(500, sigma = 0.05)
# Outliers from a Matérn cluster process
win = (-1, 1, -1, 1)
noise = randMClust(100, window = win, λ1 = 2, λ2 = 10, r = 0.05)
X = [signal; noise]
points = [signal; noise]
scatter(points)First, convert the data to a vector-format, i.e.,
Xn = [[x...] for x in points]*All rountines in the package currently read the input point-cloud data as a vector of vectors
plt = f -> plot(xseq, yseq, (x,y) -> RobustTDA.fit([[x,y]],f), st=:surface)Construct a filter function from the samples
- Vanilla Distance function:
f_dist = dist(Xn) plt(f_dist) # RobustTDA.DistanceFunction # k: Int64 1 # trees: Array{KDTree{StaticArrays.SVector{2, Float64}, Euclidean, Float64}}((1,)) # X: Array{Vector{Vector{Float64}}}((1,)) # type: String "dist" # Q: Int64 1
- Distance-to-measure:
f_dtm = dtm(Xn, 0.1) plt(f_dtm) # RobustTDA.DistanceFunction # k: Int64 60 # trees: Array{BruteTree{StaticArrays.SVector{2, Float64}, Euclidean}}((1,)) # X: Array{Vector{Vector{Float64}}}((1,)) # type: String "dtm" # Q: Int64 1
- Median-of-means Distance Function:
f_momdist = momdist(Xn, 101) plt(f_momdist) # RobustTDA.DistanceFunction # k: Int64 1 # trees: Array{KDTree{StaticArrays.SVector{2, Float64}, Euclidean, Float64}}((201,)) # X: Array{SubArray{Vector{Float64}, 1, Vector{Vector{Float64}}, Tuple{Vector{Int64}}, false}}((201,)) # type: String "momdist" # Q: Int64 201
For sublevel persistent homology, you need to specify a grid to evaluate the filter functions
xseq = -3:0.05:3
yseq = -3:0.05:3
F_grid = [RobustTDA.fit([[x, y]], f) for x in xseq, y in yseq]
D = F_grid |> Cubical |> ripsererThe code accompanying the paper , and for computing MoMDist-weighted filtrations please see the
https://github.com/sidv23/momdist
@article{
vishwanath2022momdist,
title = {Robust Topological Inference in the Presence of Outliers},
author = {
Vishwanath, Siddharth and
Sriperumbudur, Bharath K. and
Fukumizu, Kenji and
Kuriki, Satoshi
},
journal={arXiv preprint arXiv:2206.01795},
year = {2022}
keywords = {62R40, 55N31, 68T09},
url = {https://arxiv.org/abs/2206.01795},
}
