SatelliteToolboxLegendre.jl

Methods to compute Legendre associated functions and their derivatives.
Author JuliaSpace
Popularity
1 Star
Updated Last
7 Months Ago
Started In
May 2023


This package is part of the SatelliteToolbox.jl ecosystem.

SatelliteToolboxLegendre.jl

CI codecov Code Style: Blue DOI

This package contains function to compute the Legendre associated functions and its derivatives for the models in the SatelliteToolbox.jl ecosystem.

Installation

julia> using Pkg
julia> Pkg.add("SatelliteToolboxLegendre")

Usage

Legendre Associated Functions

This package exports two methods to compute the Legendre associated functions: legendre and legendre!.


legendre(N, ϕ::T, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false) where T<:Number -> Matrix{float(T)}

Compute the associated Legendre function $P_{n,m}\left[\cos(\phi)\right]$. The maximum degree that will be computed is n_max and the maximum order is m_max. Notice that if m_max is higher than n_max or negative (default), it is set to n_max.

The parameter N selects the normalization. The following values are valid:

  • Val(:full): Compute the fully normalized associated Legendre function.
  • Val(:schmidt): Compute the Schmidt quasi-normalized associated Legendre function.
  • Val(:unnormalized): Compute the unnormalized associated Legendre function.

This function has the following keywords:

  • ph_term::Bool: If true, the Condon-Shortley phase term $(-1)^m$ will be included. (Default = false)

It returns a Matrix{float(T)} with the Legendre associated functions $P_{n,m}\left[\cos(\phi)\right]$.

julia> legendre(Val(:unnormalized), 0.45, 4)
5×5 Matrix{Float64}:
 1.0       0.0       0.0       0.0      0.0
 0.900447  0.434966  0.0       0.0      0.0
 0.716207  1.17499   0.567585  0.0      0.0
 0.474547  1.99259   2.5554    1.2344   0.0
 0.210627  2.61987   6.63455   7.78058  3.75845

julia> legendre(Val(:schmidt), 0.45, 4, 3; ph_term = true)
5×4 Matrix{Float64}:
 1.0        0.0       0.0        0.0
 0.900447  -0.434966  0.0        0.0
 0.716207  -0.678381  0.163848   0.0
 0.474547  -0.813473  0.329901  -0.0650586
 0.210627  -0.828476  0.49451   -0.154993

julia> legendre(Val(:full), 0.45, 4, 1)
5×2 Matrix{Float64}:
 1.0       0.0
 1.55962   0.753382
 1.60149   1.51691
 1.25553   2.15225
 0.631881  2.48543

legendre!(N, P::AbstractMatrix, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; kwargs...) -> Nothing

Compute the associated Legendre function $P_{n,m}\left[\cos(\phi)\right]$. The maximum degree and order that will be computed are given by the parameters n_max and m_max. If they are negative (default), the dimensions of matrix P will be used:

maximum degree -> number of rows - 1
maximum order  -> number of columns - 1

The result will be stored at matrix P. Hence, this function can be used to reduce allocations.

The parameter N selects the normalization. The following values are valid:

  • Val(:full): Compute the fully normalized associated Legendre function.
  • Val(:schmidt): Compute the Schmidt quasi-normalized associated Legendre function.
  • Val(:unnormalized): Compute the unnormalized associated Legendre function.

This function has the following keywords:

  • ph_term::Bool: If true, the Condon-Shortley phase term $(-1)^m$ will be included. (Default = false)

Derivative of the Legendre Associated Functions

This package exports two methods to compute the derivative of the Legendre associated functions: dlegendre and dlegendre!.


dlegendre(N, ϕ::T, n_max::Integer, m_max::Integer = -1; kwargs...) where T<:Number -> Matrix{float(T)}, Matrix{float(T)}

Compute the first-order derivative of the associated Legendre function $P_{n,m}\left[\cos(\phi)\right]$ with respect to $\phi$ [rad]:

$$\frac{\partial P_{n,m} \left[\cos(\phi)\right]}{\partial\phi}$$

The maximum degree that will be computed is n_max and the maximum order is m_max. Notice that if m_max is higher than n_max or negative (default), it is set to n_max.

The parameter N selects the normalization. The following values are valid:

  • Val(:full): Compute the fully normalized associated Legendre function.
  • Val(:schmidt): Compute the Schmidt quasi-normalized associated Legendre function.
  • Val(:unnormalized): Compute the unnormalized associated Legendre function.

This function has the following keywords:

  • ph_term::Bool: If true, the Condon-Shortley phase term $(-1)^m$ will be included. (Default = false)

It returns the following objects:

  • Matrix{float(T)}: A matrix with the first-order derivative of the Legendre associated functions $P_{n,m}\left[\cos(\phi)\right]$.
  • Matrix{float(T)}: A matrix with the Legendre associated functions $P_{n,m}\left[\cos(\phi)\right]$`.
julia> dP, P = dlegendre(Val(:unnormalized), 0.45, 4)

julia> dP
5×5 Matrix{Float64}:
  0.0        0.0        0.0       0.0      0.0
 -0.434966   0.900447   0.0       0.0      0.0
 -1.17499    1.86483    2.34998   0.0      0.0
 -1.99259    1.56958    9.34577   7.6662   0.0
 -2.61987   -1.21101   19.6885   44.5626  31.1223

julia> P
5×5 Matrix{Float64}:
 1.0       0.0       0.0       0.0      0.0
 0.900447  0.434966  0.0       0.0      0.0
 0.716207  1.17499   0.567585  0.0      0.0
 0.474547  1.99259   2.5554    1.2344   0.0
 0.210627  2.61987   6.63455   7.78058  3.75845

julia> dP, P = dlegendre(Val(:schmidt), 0.45, 4, 3; ph_term = true)

julia> dP
5×4 Matrix{Float64}:
  0.0        0.0       0.0        0.0
 -0.434966  -0.900447  0.0        0.0
 -1.17499   -1.07666   0.678381   0.0
 -1.99259   -0.640778  1.20653   -0.404044
 -2.61987    0.382954  1.4675    -0.887709

julia> P
5×5 Matrix{Float64}:
 1.0        0.0       0.0        0.0        0.0
 0.900447  -0.434966  0.0        0.0        0.0
 0.716207  -0.678381  0.163848   0.0        0.0
 0.474547  -0.813473  0.329901  -0.0650586  0.0
 0.210627  -0.828476  0.49451   -0.154993   0.0264706

julia> dP, P = dlegendre(Val(:full), 0.45, 4, 1)

julia> dP
5×2 Matrix{Float64}:
  0.0        0.0
 -0.753382   1.55962
 -2.62736    2.40749
 -5.27191    1.69534
 -7.85961   -1.14886

julia> P
5×3 Matrix{Float64}:
 1.0       0.0       0.0
 1.55962   0.753382  0.0
 1.60149   1.51691   0.366375
 1.25553   2.15225   0.872836
 0.631881  2.48543   1.48353

dlegendre!(dP::AbstractMatrix, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; kwargs...) -> Nothing

Compute the first-order derivative of the associated Legendre function $P_{n,m}\left[\cos(\phi)\right]$ with respect to $\phi$ [rad]:

$$\frac{\partial P_{n,m} \left[\cos(\phi)\right]}{\partial\phi}$$

The maximum degree and order that will be computed are given by the parameters n_max and m_max. If they are negative (default), the dimensions of matrix dP will be used:

maximum degree -> number of rows - 1
maximum order  -> number of columns - 1

The derivatives will be stored in the matrix dP. Hence, this function can be used to reduce allocations.

The parameter N selects the normalization. The following values are valid:

  • Val(:full): Compute the fully normalized associated Legendre function.
  • Val(:schmidt): Compute the Schmidt quasi-normalized associated Legendre function.
  • Val(:unnormalized): Compute the unnormalized associated Legendre function.

This algorithm needs the matrix P with the values of the associated Legendre function using the same normalization N, which can be computed using the function legendre.

Warning The user is responsible to pass a matrix P with the correct values. For example, if ph_term is true, P must also be computed with ph_term set to true.

This function has the following keywords:

  • ph_term::Bool: If true, the Condon-Shortley phase term $(-1)^m$ will be included. (Default = false)

Normalizations

Full normalization

This algorithm was based on [1]. Our definition of fully normalized associated Legendre function can be seen in [2, p. 546]. The conversion is obtained by:

$$K_{n,m} = \sqrt{k \cdot \frac{(n - m)! \cdot (2n + 1)}{(n + m)!}}~,$$

where $k = 1$ if $m = 0$ or $k = 2$ otherwise. Hence:

$$P^f_{n,m} = P_{n,m} \cdot K_{n,m}$$

where $P^f_{n,m}$ is the fully normalized Legendre associated function.

Schmidt quasi-normalization

This algorithm was based on [3, 4]. The conversion is obtained by:

$$K_{n,m} = \sqrt{k \cdot \frac{(n - m)!}{(n + m)!}}~,$$

where $k = 1$ if $m = 0$ or $k = 2$ otherwise. Hence:

$$P^s_{n,m} = P_{n,m} \cdot K_{n,m}$$

where $P^s_{n,m}$ is the Schmidt quasi-normalized Legendre associated function.

References

  • [1] Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. Journal of Geodesy, 76(5), pp. 279-299. For more info.: http://mitgcm.org/~mlosch/geoidcookbook/node11.html
  • [2] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press, Hawthorn, CA, USA.
  • [3] Schmidt, A (1917). Erdmagnetismus, Enzykl. Math. Wiss., 6, pp. 265–396.
  • [4] Winch, D. E., Ivers, D. J., Turner, J. P. R., Stening R. J (2005). Geomagnetism and Schmidt quasi-normalization. Geophysical Journal International, 160(2), pp. 487-504.

Required Packages

No packages found.