SimpleQuaternions.jl

Basic implementation of Hamilton's quaternions
Author scheinerman
Popularity
1 Star
Updated Last
1 Year Ago
Started In
August 2020

SimpleQuaternions

Build Status

The quaternions are an extension to the real (and complex) numbers. See this article.

Fundamentals

This module provides the SimpleQuaternion type. To create the quaternion a + bi + cj + dk use SimpleQuaternion(a,b,c,d) or, alternatively a + b*im + c*jm + d*km.

Note that im is the usual Julia representation for i; this module adds jm and km. Thus, the expression 1+im yields a Complex value, but 1+jm yields a SimpleQuaternion.

Some examples:

julia> a = 3im - 4 + km
-4 + 3im + 0jm + 1km

julia> get_parts(a)
(-4, 3, 0, 1)

julia> real(a)   # Return the real part of a
-4

julia> isreal(a)
false

julia> a'        # return the conjugate of a
-4 - 3im + 0jm - 1km

julia> b = 1 - 4im + jm
1 - 4im + 1jm + 0km

julia> a+b
-3 - 1im + 1jm + 1km

julia> a-b
-5 + 7im - 1jm + 1km

julia> a*b
8 + 18im - 8jm + 4km

julia> inv(a)
-0.15384615384615385 - 0.11538461538461539im + 0.0jm - 0.038461538461538464km

julia> 1//a
-2//13 - 3//26im + 0//1jm - 1//26km

julia> a/b
-0.8888888888888888 - 0.6666666666666666im + 0.4444444444444444jm - 0.1111111111111111km

julia> a//b
-8//9 - 2//3im + 4//9jm - 1//9km

julia> im*jm == km
true

julia> jm*im == -km
true

julia> im*im == jm*jm == km*km == -1
true

Matrix representation

Quaternions can be represented by 4-by-4 real matrices or by 2-by-2 complex matrices. The functions real_matrix and complex_matrix produce these.

julia> a = 3im-4 + km
-4 + 3im + 0jm + 1km

julia> isreal(a)
false

julia> a = 3im-4 + km^C

julia> a = 3im - 4 + km
-4 + 3im + 0jm + 1km

julia> get_parts(a)
(-4, 3, 0, 1)

julia> b = SimpleQuaternion(-8,0,2,6)^C

julia> b = 1 - 4im + jm
1 - 4im + 1jm + 0km

julia> a = 3im - 4 + km
-4 + 3im + 0jm + 1km

julia> b = 1 - 4im + jm
1 - 4im + 1jm + 0km

julia> A = real_matrix(a); B = real_matrix(b)
4×4 Array{Int64,2}:
  1   4  -1  0
 -4   1   0  1
  1   0   1  4
  0  -1  -4  1

julia> A*B == real_matrix(a*b)
true

julia> A = complex_matrix(a); B = complex_matrix(b)
2×2 Array{Complex{Int64},2}:
  1-4im  1+0im
 -1+0im  1+4im

julia> A*B == complex_matrix(a*b)
true

After either A = real_matrix(x) or A = complex_matrix(x) we can use SimpleQuaternion(A) to recover x. If A is not a valid matrix, an error is thrown.

Random quaternions

Use rand(SimpleQuaternion) to yield a random quaternion each of whose four components is a uniform [0,1] random value.

Use randn(SimpleQuaternion) to yield a random quaternion each of whose four components is a standard normal random value.