SymmetricTensors.jl

Framework for symmetric tensors
Author iitis
Popularity
10 Stars
Updated Last
6 Months Ago
Started In
January 2017

SymmetricTensors.jl

Coverage Status DOI

SymmetricTensors.jl provides the SymmetricTensors{T, N} type used to store fully symmetric tensors in more efficient way, without most of redundant repetitions. It uses blocks of Array{T, N} stored in Union{Array{Float,N}, Nothing} structure. Repeated blocks are replaced by Void. The module introduces SymmetricTensors{T, N} type and some basic operations on this type. As of 01/01/2017 @kdomino is the lead maintainer of this package.

Installation

Within Julia, just use run

pkg> add SymmetricTensors

to install the files. Julia 1.0 or later is required.

Constructor

julia> data = ones(4,4);


julia> SymmetricTensor{Float64,2}(Union{Nothing, Array{Float64,2}}[[1.0 1.0; 1.0 1.0] [1.0 1.0; 1.0 1.0]; nothing [1.0 1.0; 1.0 1.0]], 2, 2, 4, true)

Converting

From Array{T, N} to SymmetricTensors{T, N}

julia> SymmetricTensors(data::Array{T, N}, bls::Int = 2)

where bls is the size of a block. It is a parameter affecting the compuational speed of cumulants. The block size must fulfill bls ∈ {1, 2,..., dats} where dats = size(data, 1) = ... = size(data, N) otherwise error is risen.

julia> data = ones(4,4);


julia> convert(SymmetricTensor, data, 2)
SymmetricTensor{Float64,2}(Union{Nothing, Array{Float64,2}}[[1.0 1.0; 1.0 1.0] [1.0 1.0; 1.0 1.0]; nothing [1.0 1.0; 1.0 1.0]], 2, 2, 4, true)

From SymmetricTensors{T, N} to Array{T, N}

julia> Array(st::SymmetricTensors{T, N})

Wrong block size:

julia> SymmetricTensor(ones(4,4), 5)
ERROR: DimensionMismatch("bad block size 5 > 4")

Fields

  • frame::ArrayNArrays{T,N}: stores data, where ArrayNArrays{T,N} = Array{Union{Array{T, N}, Nothing}, N}
  • bls::Int: the size of ordinary block (the same in each direction),
  • bln::Int: maximal number of blocks in each direction,
  • dats::Int: the size of data stored (the same in each direction),
  • sqr::Bool: if all blocks are squares (N-squares).

Suppose we have N = 2 and dats = 6 and bls = 3 hence data are symmetric matrix of size 6 x 6. Data are stored in the form:

|B11   B12 | 
|null  B22 | 

here bls = 2 and size of B11, B12, and B22 are 3 x 3. Bear in mind, that B11 and B22 his to be symmetric. As B12 (the last block) is square, sqr = True.

Suppose now N = 2 and dats = 5 and bls = 3 hence data are symmetric matrix of size 5 x 5. Data are stored in similar form:

|B11   B12 | 
|null  B22 | 

here bls = 2 and size of B11 is 3 x 3, but size of B12 is 2 x 3, and size B22 is 2 x 2 . Again B11 and B22 his to be symmetric. As B12 (the last block) is not square, sqr = False.

For N = 3 we have analogical pyramid representation, and for N > 3 hyper-pyramid representation.

Operations

Elementwise addition: +, - is supported between many SymmetricTensors{T, N} while elementwise substraction: - between two SymmetricTensors{T, N}. Addition substraction multiplication and division +, -, *, / is supported between SymmetricTensors{T, N} and a number.

julia> x = SymmetricTensor(ones(4,4));

julia> y = SymmetricTensor(2*ones(4,4));

julia> x+y
SymmetricTensor{Float64,2}(Union{Nothing, Array{Float64,2}}[[3.0 3.0; 3.0 3.0] [3.0 3.0; 3.0 3.0]; #undef [3.0 3.0; 3.0 3.0]], 2, 2, 4, true)

julia> x*10
SymmetricTensor{Float64,2}(Union{Nothing, Array{Float64,2}}[[10.0 10.0; 10.0 10.0] [10.0 10.0; 10.0 10.0]; #undef [10.0 10.0; 10.0 10.0]], 2, 2, 4, true)

The function diag returns a Vector{T}, of all super-diagonal elements of a SymmetricTensor.

julia> data = ones(5,5,5,5);

julia> st = SymmetricTensor(data);

julia> diag(st)
5-element Array{Float64,1}:
 1.0
 1.0
 1.0
 1.0
 1.0

Random Symmetric Tensor generation

To generate random Symmetric Tensor with random elements of typer T form a uniform distribution on [0,1) use rand(SymmetricTensor{T, N}, n::Int, b::Int = 2). Here n denotes size of each mode and b denotes block size. Eg. for N = 4 we would have n x n x n x n tensor.

julia> using Random

julia> Random.seed!(42)

julia> x = rand(SymmetricTensor{Float64, 3}, 2)
SymmetricTensor{Float64, 3}(Union{Nothing, Array{Float64, 3}}[[0.5331830160438613 0.4540291355871424; 0.4540291355871424 0.017686826714964354]

[0.4540291355871424 0.017686826714964354; 0.017686826714964354 0.17293302893695128]], 2, 1, 2, true)

julia> Array(x)
2×2×2 Array{Float64, 3}:
[:, :, 1] =
 0.533183  0.454029
 0.454029  0.0176868

[:, :, 2] =
 0.454029   0.0176868
 0.0176868  0.172933

julia> Random.seed!(42)

julia> x = rand(SymmetricTensor{Float64, 2}, 3)
SymmetricTensor{Float64, 2}(Union{Nothing, Matrix{Float64}}[[0.5331830160438613 0.4540291355871424; 0.4540291355871424 0.017686826714964354] [0.17293302893695128; 0.9589258763297348]; nothing [0.9735659798036858]], 2, 2, 3, false)

julia> Array(x)
3×3 Matrix{Float64}:
 0.533183  0.454029   0.172933
 0.454029  0.0176868  0.958926
 0.172933  0.958926   0.973566

getindex and setindex!

julia> using Random

julia> Random.seed!(42)

julia> st = rand(SymmetricTensor{Float64, 2}, 2)
SymmetricTensor{Float64,2}(Union{Nothing, Array{Float64,2}}[[0.533183 0.454029; 0.454029 0.0176868]], 2, 1, 2, true)

julia> st[1,2]
0.4540291355871424

julia> st[2,1]
0.4540291355871424


julia> pyramidindices(st)
3-element Vector{Tuple{Int64, Int64}}:
 (1, 1)
 (1, 2)
 (2, 2)

Function pyramidindices(st::SymmetricTensor) returns the indices of the unique element of the give symmetric tensor

setindex!(st::SymmetricTensor, x::Float, mulind::Int...) changes all symmetric tensor's elements indexed by mulind to x.

julia> st[1,2] = 10.

julia> convert(Array, st)
2×2 Array{Float64,2}:
  0.533183  10.0      
 10.0        0.0176868

Auxiliary function

julia> unfold(data::Array{T,N}, mode::Int)

unfolds data in a given mode

julia> a = reshape(collect(1.:8.), (2,2,2))
2×2×2 Array{Float64,3}:
[:, :, 1] =
 1.0  3.0
 2.0  4.0

[:, :, 2] =
 5.0  7.0
 6.0  8.0

julia> unfold(a, 1)
2×4 Array{Float64,2}:
 1.0  3.0  5.0  7.0
 2.0  4.0  6.0  8.0

julia> unfold(a, 2)
2×4 Array{Float64,2}:
 1.0  2.0  5.0  6.0
 3.0  4.0  7.0  8.0

julia> unfold(a, 3)
2×4 Array{Float64,2}:
 1.0  2.0  3.0  4.0
 5.0  6.0  7.0  8.0

Block structure

The block usage is motivated by the paper M. D. Schatz, T. M. Low, R. A. van de Geijn, and T. G. Kolda, "Exploiting symmetry in tensors for high performance: Multiplication with symmetric tensors", SIAM Journal on Scientific Computing, 36 (2014), pp. C453–C479 https://doi.org/10.1137/130907215. There only the meaningful part of the symmetric tensor is stored in blocks to decrease the memory and computational overhead.

For application of this representation to compute cumulants, see: K. Domino, P. Gawron, Ł. Pawela "Efficient Computation of Higher-Order Cumulant Tensors", SIAM Journal on Scientific Computing, 40 (2018) https://doi.org/10.1137/17M1149365. The selection of the optimal block size is not straight forward, however in most cases concerning cumulants one can use 2 or 3.

This project was partially financed by the National Science Centre, Poland – project number 2014/15/B/ST6/05204.