TensorFields.jl

Maurer-Cartan-Lie frame connections ∇ Grassmann.jl TensorField derivations
Author chakravala
Popularity
7 Stars
Updated Last
3 Months Ago
Started In
August 2023

Cartan.jl

Cartan.jl

Maurer-Cartan-Lie frame connections ∇ Grassmann.jl TensorField derivations

DOI Docs Stable Docs Dev Gitter Build status

Provides TensorField{B,F,N} <: GlobalFiber{LocalTensor{B,F},N} implementation for both a local ProductSpace and general ImmersedTopology specifications on any AbstractFrameBundle expressed with Grassmann.jl algebra. Many of these modular methods can work on input meshes or product topologies of any dimension, although there are some methods which are specialized. Building on this, Cartan provides an algebra for any GlobalSection and associated bundles on a manifold, such as general Connection and CovariantDerivative operators in terms of Grassmann elements. Utility package for differential geometry and tensor calculus intended for Adapode.jl.

The Cartan package is intended to standardize the composition of various methods and functors applied to specialized categories transformed with a unified representation over a product topology, especially having fibers of the Grassmann algebra. Initial topologies include ProductSpace types and in general the ImmersedTopology.

Positions{P, G} where {P<:Chain, G} (alias for AbstractArray{<:Coordinate{P, G}, 1} where {P<:Chain, G})
Interval{P, G} where {P<:AbstractReal, G} (alias for AbstractArray{<:Coordinate{P, G}, 1} where {P<:Union{Real, Single{V, G, B, <:Real} where {V, G, B}, Chain{V, G, <:Real, 1} where {V, G}}, G})
IntervalRange (alias for GridFrameBundle{P, G, 1, PA, GA} where {P<:Real, G, PA<:AbstractRange, GA})
Rectangle (alias for ProductSpace{V, T, 2, 2} where {V, T})
Hyperrectangle (alias for ProductSpace{V, T, 3, 3} where {V, T})
RealRegion{V, T} where {V, T<:Real} (alias for ProductSpace{V, T, N, N, S} where {V, T<:Real, N, S<:AbstractArray{T, 1}})
RealSpace{N} where N (alias for AbstractArray{<:Coordinate{P, G}, N} where {N, P<:(Chain{V, 1, <:Real} where V), G})
AlignedRegion{N} where N (alias for GridFrameBundle{P, G, N, PA, GA} where {N, P<:Chain, G<:InducedMetric, PA<:(ProductSpace{V, <:Real, N, N, <:AbstractRange} where V), GA<:Global})
AlignedSpace{N} where N (alias for GridFrameBundle{P, G, N, PA, GA} where {N, P<:Chain, G<:InducedMetric, PA<:(ProductSpace{V, <:Real, N, N, <:AbstractRange} where V), GA})
GridFrameBundle{P,G,N,PA<:AbstractArray{P,N},GA<:AbstractArray{G,N}} <: AbstractFrameBundle{Coordinate{P,G},N}
SimplexFrameBundle{P,G,PA<:AbstractVector{P},GA<:AbstractVector{G},TA<:ImmersedTopology} <: AbstractFrameBundle{Coordinate{P,G},1}
FacetFrameBundle{P,G,PA,GA,TA<:ImmersedTopology} <: AbstractFrameBundle{Coordinate{P,G},1}
AbstractFrameBundle{Coordinate{B,F},N} where {B,F,N}

Visualizing TensorField reperesentations can be standardized in combination with Makie.jl or UnicodePlots.jl.

Due to the versatility of the TensorField type instances, it's possible to disambiguate them into these type alias specifications with associated methods:

ScalarMap (alias for TensorField{B, F, 1, BA} where {B, F<:AbstractReal, BA<:SimplexFrameBundle})
IntervalMap (alias for TensorField{B, F, 1, P} where {B, F, P<:(AbstractArray{<:Coordinate{P, G}, 1} where {P<:Union{Real, Single{V, G, B, <:Real} where {V, G, B}, Chain{V, G, <:Real, 1} where {V, G}}, G})})
RectangleMap (alias for TensorField{B, F, 2, P} where {B, F, P<:(AbstractMatrix{<:Coordinate{P, G}} where {P<:(Chain{V, 1, <:Real} where V), G})})
HyperrectangleMap (alias for TensorField{B, F, 3, P} where {B, F, P<:(AbstractArray{<:Coordinate{P, G}, 3} where {P<:(Chain{V, 1, <:Real} where V), G})})
ParametricMap (alias for TensorField{B, F, N, P} where {B, F, N, P<:(AbstractArray{<:Coordinate{P, G}, N} where {N, P<:(Chain{V, 1, <:Real} where V), G})})
RealFunction (alias for TensorField{B, F, 1, PA} where {B, F<:AbstractReal, PA<:(AbstractVector{<:AbstractReal})})
PlaneCurve (alias for ParametricMap (alias for TensorField{B, F, N, P} where {B, F, N, P<:(AbstractArray{<:Coordinate{P, G}, N} where {N, P<:(Chain{V, 1, <:Real} where V), G})}))
SpaceCurve (alias for TensorField{B, F, 1, P} where {B, F<:(Chain{V, G, Q, 3} where {V, G, Q}), P<:(AbstractVector{<:Coordinate{P, G}} where {P<:AbstractReal, G})})
AbstractCurve (alias for TensorField{B, F, 1, P} where {B, F<:Chain, P<:(AbstractVector{<:Coordinate{P, G}} where {P<:AbstractReal, G})})
SurfaceGrid (alias for TensorField{B, F, 2, P} where {B, F<:AbstractReal, P<:(AbstractMatrix{<:Coordinate{P, G}} where {P<:(Chain{V, 1, <:Real} where V), G})})
VolumeGrid (alias for TensorField{B, F, 3, P} where {B, F<:AbstractReal, P<:(AbstractArray{<:Coordinate{P, G}, 3} where {P<:(Chain{V, 1, <:Real} where V), G})})
ScalarGrid (alias for TensorField{B, F, N, P} where {B, F<:AbstractReal, N, P<:(AbstractArray{<:Coordinate{P, G}, N} where {P<:(Chain{V, 1, <:Real} where V), G})})
GlobalFrame{B, N, N} where {B<:(LocalFiber{P, <:TensorNested} where P), N, N} (alias for Cartan.GlobalSection{B, N, N1, BA, FA} where {B<:(LocalFiber{P, <:TensorNested} where P), N, N1, BA, FA<:AbstractArray{N, N1}})
DiagonalField (alias for TensorField{B, F} where {B, F<:DiagonalOperator})
EndomorphismField (alias for TensorField{B, F} where {B, F<:(TensorOperator{V, V, T} where {V, T<:(TensorAlgebra{V, <:TensorAlgebra{V}})})})
OutermorphismField (alias for TensorField{B, F} where {B, F<:Outermorphism})
CliffordField (alias for TensorField{B, F} where {B, F<:Multivector})
QuaternionField (alias for TensorField{B, F} where {B, F<:(Quaternion)})
ComplexMap (alias for TensorField{B, F} where {B, F<:(Union{Complex{T}, Single{V, G, B, Complex{T}} where {V, G, B}, Chain{V, G, Complex{T}, 1} where {V, G}, Couple{V, B, T} where {V, B}, Phasor{V, B, T} where {V, B}} where T<:Real)})PhasorField (alias for TensorField{B, T, F} where {B, T, F<:Phasor})
SpinorField (alias for TensorField{B, F} where {B, F<:AbstractSpinor})
GradedField{G} where G (alias for TensorField{B, F} where {G, B, F<:(Chain{V, G} where V)})
ScalarField (alias for TensorField{B, F} where {B, F<:Union{Real, Single{V, G, B, <:Real} where {V, G, B}, Chain{V, G, <:Real, 1} where {V, G}}})
VectorField (alias for TensorField{B, F} where {B, F<:(Chain{V, 1} where V)})
BivectorField (alias for TensorField{B, F} where {B, F<:(Chain{V, 2} where V)})
TrivectorField (alias for TensorField{B, F} where {B, F<:(Chain{V, 3} where V)})

In the Cartan package, a technique is employed where an identity TensorField is constructed from an interval or product manifold, to generate an algebra of sections which can be used to compose parametric maps on manifolds. Constructing a TensorField can be accomplished in various ways, there are explicit techniques to construct a TensorField as well as implicit methods. Additional packages such as Adapode build on the TensorField concept by generating them from differential equations. Many of these methods can automatically generalize to higher dimensional manifolds and are compatible with discrete differential geometry.

 _________                __                  __________
 \_   ___ \_____ ________/  |______    ____   \\       /
 /    \  \/\__  \\_  __ \   __\__  \  /    \   \\     /
 \     \____/ __ \|  | \/|  |  / __ \|   |  \   \\   /
  \______  (____  /__|   |__| (____  /___|  /    \\ /
         \/     \/                 \/     \/      \/

developed by chakravala with Grassmann.jl

Used By Packages

No packages found.