This repository contains code to calculate a one-tree approximation to the TSP.
History of the training parameters:
This is the current example for evalution (german_cities.jl):
using TSPSubgradient, LightGraphs, GraphLayout, Plots
# distance matrix between cities (symmetric, undirected)
distmx = Float64[
0 91 80 259 70 121;
91 0 77 175 27 84;
80 77 0 232 47 29;
259 175 232 0 189 236;
70 27 47 189 0 55;
121 84 29 236 55 0;
]
N = size(distmx)[1]
root = 6
g = Graph(N)
for i in 1:N
for j in 1:N
if i!=j
add_edge!(g, i, j)
end
end
end
ot = one_tree(g, distmx, 6)
iters = 300
costs, ots, lambdas = tsp_subgradient(g, distmx, iters, 6, tau=0.5)
# plot one tree
for k in 10:10:iters-1
am = full(adjacency_matrix(ots[k]))
loc_x, loc_y = layout_spring_adj(am)
draw_layout_adj(am, loc_x, loc_y, labels=Array(1:6), filename=string("ot",k,".svg"))
end
using Plots
plotly()
plot(costs, linewidth=2,title="Cost")
plot(lambdas,linewidth=2,title="Lagrange multipliers")
Copyright (C) 2016 Christian Weilbach. Distributed under the MIT License.