UniformIsingModels.jl

Exact computations on fully-connected Ising models with uniform couplings
Author stecrotti
Popularity
1 Star
Updated Last
5 Months Ago
Started In
May 2022

UniformIsingModels

Build Status Coverage

A fully-connected ferromagnetic Ising model with uniform coupling strength, described by a Boltzmann distribution

$p(\boldsymbol{\sigma}) = \frac{1}{Z} \exp\left[\beta\left(\frac{J}{N}\sum_{i<j}\sigma_i\sigma_j+\sum_{i=1}^Nh_i\sigma_i\right)\right],\quad \boldsymbol{\sigma}\in{-1,1}^N $

is exactly solvable in polynomial time.

Quantity Expression Cost
Normalization $Z=\sum\limits_{\boldsymbol{\sigma}}\exp\left[\beta\left(\frac{J}{N}\sum_{i<j}\sigma_i\sigma_j+\sum_{i=1}^Nh_i\sigma_i\right)\right]$ $\mathcal O (N^2)$
Free energy $F = -\frac{1}{\beta}\log Z$ $\mathcal O (N^2)$
Sample a configuration $\boldsymbol{\sigma} \sim p(\boldsymbol{\sigma})$ $\mathcal O (N^2)$
Average energy $U = \sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\left[-\left(\frac{J}{N}\sum_{i<j}\sigma_i\sigma_j+\sum_{i=1}^Nh_i\sigma_i\right)\right]$ $\mathcal O (N^2)$
Entropy $S = -\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\log p(\boldsymbol{\sigma})$ $\mathcal O (N^2)$
Distribution of the sum of the N spins $p_S(s)=\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\delta\left(s-\sum_{i=1}^N\sigma_i\right)$ $\mathcal O (N^2)$
Site magnetizations $m_i=\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\sigma_i,\quad\forall i\in{1,2,\ldots,N}$ $\mathcal O (N^3)$
Correlations $r_{ij}=\sum\limits_{\boldsymbol{\sigma}}p(\boldsymbol{\sigma})\sigma_i\sigma_j,\quad\forall j\in{1,2,\ldots,N},i<j$ $\mathcal O (N^5)$

Example

]add UniformIsingModels

Construct a UniformIsing instance

using UniformIsingModels, Random

N = 10
J = 2.0
rng = MersenneTwister(0)
h = randn(rng, N)
β = 0.1
x = UniformIsing(N, J, h, β)

Compute stuff

# normalization and free energy
Z = normalization(x)
F = free_energy(x)

# energy and probability of a configuration
σ = rand(rng, (-1,1), N) 
E = energy(x, σ)
prob = pdf(x, σ)

# a sample along with its probability 
σ, p = sample(rng, x)

# single-site magnetizations <σᵢ>
m = site_magnetizations(x)

# distribution of the sum Σᵢσᵢ of all variables
ps = sum_distribution(x)

# energy expected value
U = avg_energy(x)

# entropy
S = entropy(x)

# correlations <σᵢσⱼ> and covariances <σᵢσⱼ>-<σᵢ><σⱼ>
p = correlations(x)
c = covariances(x)

Notes

The internals rely on dynamic programming.

If you know of any implementation that's more efficient than this one I'd be very happy to learn about it!

Used By Packages

No packages found.