This package provides a julia wrapper for VisualDL, which is a deep learning visualization tool that can help design deep learning jobs.
Currently, the wrapper is written on top of the Python SDK of VisualDL by PyCall. I have tried to write the wrapper on top of the C++ SDK by leveraging CxxWrap.jl. But unluckily a strange error encountered. Hopefully I'll figured it out later and swap the backend into C++.
-
First, install the Python client of VisualDL. Checkout here for a detailed guide.
-
Then add this package as a dependent(only tested on Julia v0.7).
(v0.7) pkg> add VisualDL
First, initial the logger.
using VisualDL
train_logger = VisualDLLogger("tmp", 1, "train")
test_logger = as_mode(train_logger, "test")
for i in 1:100
with_logger(train_logger) do
@log_scalar s0=(i,rand()) s1=(i, rand())
end
with_logger(test_logger) do
@log_scalar s0=(i,rand()) s1=(i, rand())
end
end
for i in 1:100
with_logger(train_logger) do
@log_histogram h0=(i, randn(100))
end
end
for i in 1:100
with_logger(train_logger) do
@log_text t0=(i, "This is test " * string(i))
end
end
for i in 1:100
with_logger(train_logger) do
@log_image i0=([3,3,3], rand(27) * 255)
end
end
for i in 1:100
with_logger(test_logger) do
@log_image image0=rand(10, 10, 3) * 255
end
end
# force save and sync
save(train_logger)
save(test_logger)
Finally, run visualDL --logdir ./tmp
in current dir. Then launch the visualdl service and watch the above pictures in browser. The default url is http://localhost:8040
:
- More documentation
-
Addand testsLogReader
- Precompile
- Travis
- Make Release
- Move out the
start_sampling
andfinish_sampling
from@log_image
and@log_audio