YeoJohnsonTrans.jl

Yeo-Johnson Transform
Author tk3369
Popularity
5 Stars
Updated Last
5 Months Ago
Started In
September 2018

YeoJohnsonTrans.jl

Build Status codecov Coverage Status

This package provides an implementation of Yeo Johnson transformation. See Wikipedia - Power Transform for more information.

Requires Julia 1.0 or higher version.

Installation

This package has not registered yet.

] add https://github.com/tk3369/YeoJohnsonTrans.jl

Usage

The simplest way is to just call the transform function with an array of numbers.

julia> using Distributions, UnicodePlots, YeoJohnsonTrans

julia> x = rand(Gamma(2,2), 10000) .+ 1;

julia> histogram(YeoJohnsonTrans.transform(x))
             ┌────────────────────────────────────────┐
   (0.6,0.8] │▇▇ 168                                  │
   (0.8,1.0] │▇▇▇▇▇▇▇▇▇▇▇▇ 837                        │
   (1.0,1.2] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1586            │
   (1.2,1.4] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2089    │
   (1.4,1.6] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2307 │
   (1.6,1.8] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1816        │
   (1.8,2.0] │▇▇▇▇▇▇▇▇▇▇▇▇▇ 914                       │
   (2.0,2.2] │▇▇▇▇ 253                                │
   (2.2,2.4] │ 28                                     │
   (2.4,2.6] │ 2                                      │
             └────────────────────────────────────────┘

You can examine the power transform parameter (λ) dervied by the program:

julia> YeoJohnsonTrans.lambda(x).value
-0.20252181252892174

You can transfrom the data using your own λ:

julia> histogram(YeoJohnsonTrans.transform(x, -0.3))
             ┌────────────────────────────────────────┐
   (0.6,0.7] │▇ 49                                    │
   (0.7,0.8] │▇▇▇▇▇ 204                               │
   (0.8,0.9] │▇▇▇▇▇▇▇▇▇▇▇ 427                         │
   (0.9,1.0] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 703                   │
   (1.0,1.1] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 916             │
   (1.1,1.2] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1103        │
   (1.2,1.3] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1287   │
   (1.3,1.4] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1376 │
   (1.4,1.5] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1354  │
   (1.5,1.6] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1125       │
   (1.6,1.7] │▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 773                 │
   (1.7,1.8] │▇▇▇▇▇▇▇▇▇▇▇ 432                         │
   (1.8,1.9] │▇▇▇▇▇ 197                               │
   (1.9,2.0] │▇ 45                                    │
   (2.0,2.1] │ 8                                      │
   (2.1,2.2] │ 1                                      │
             └────────────────────────────────────────┘