15 Packages since 2017
User Packages
-
Stheno.jl339Probabilistic Programming with Gaussian processes in Julia
-
KernelFunctions.jl267Julia package for kernel functions for machine learning
-
AbstractGPs.jl217Abstract types and methods for Gaussian Processes.
-
TemporalGPs.jl110Fast inference for Gaussian processes in problems involving time. Partly built on results from https://proceedings.mlr.press/v161/tebbutt21a.html
-
ParameterHandling.jl72Foundational tooling for handling collections of parameters in models
-
GPLikelihoods.jl43Provides likelihood functions for Gaussian Processes.
-
ApproximateGPs.jl35Approximations for Gaussian processes: sparse variational inducing point approximations, Laplace approximation, ...
-
BayesianLinearRegressors.jl30Bayesian Linear Regression in Julia
-
AugmentedGPLikelihoods.jl20Provide all functions needed to work with augmented likelihoods (conditionally conjugate with Gaussians)
-
InducingPoints.jl8Package for different inducing points selection methods
-
KernelSpectralDensities.jl6-
-
LinearMixingModels.jl6Http://proceedings.mlr.press/v119/bruinsma20a.html
-
RandomFourierFeatures.jl3[WIP] Random Fourier Feature approximations for KernelFunctions.jl
-
AbstractGPsMakie.jl2Plots of Gaussian processes with AbstractGPs and Makie
-
ScalarKernelFunctions.jl0Kernel functions optimized for 1d input
View all packages