Documentation | Build Status | Julia | Testing | DOI |
---|---|---|---|---|
CellularAutomata.jl is registered on the general registry. For the installation follow:
julia> using Pkg
julia> Pkg.add("CellularAutomata")
or, if you prefer:
julia> using Pkg
julia> Pkg.add("https://github.com/MartinuzziFrancesco/CellularAutomata.jl")
The package offers creation of all the cellular automata described in A New Kind of Science by Wolfram, and the rules for the creation are labelled as in the book. We will recreate some of the examples that can be found in the wolfram atlas both for elementary and totalistic cellular automata.
Elementary Cellular Automata (ECA) have a radius of one and can be in only two possible states. Here we show a couple of examples:
using CellularAutomata, Plots
states = 2
radius = 1
generations = 50
ncells = 111
starting_val = zeros(Bool, ncells)
starting_val[Int(floor(ncells/2)+1)] = 1
rule = 18
ca = CellularAutomaton(DCA(rule), starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false)
using CellularAutomata, Plots
states = 2
radius = 1
generations = 50
ncells = 111
starting_val = zeros(Bool, ncells)
starting_val[Int(floor(ncells/2)+1)] = 1
rule = 30
ca = CellularAutomaton(DCA(rule), starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false)
General Cellular Automata have the same rule of ECA but they can have a radius larger than unity and/or a number of states greater than two. Here are provided examples for every possible permutation, starting with a Cellular Automaton with 3 states.
using CellularAutomata, Plots
states = 3
radius = 1
generations = 50
ncells = 111
starting_val = zeros(ncells)
starting_val[Int(floor(ncells/2)+1)] = 2
rule = 7110222193934
ca = CellularAutomaton(DCA(rule,states=states,radius=radius),
starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false,
size=(ncells*10, generations*10))
The following examples shows a Cellular Automaton with radius=2, with two only possible states:
using CellularAutomata, Plots
states = 2
radius = 2
generations = 30
ncells = 111
starting_val = zeros(ncells)
starting_val[Int(floor(ncells/2)+1)] = 1
rule = 1388968789
ca = CellularAutomaton(DCA(rule,states=states,radius=radius),
starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false,
size=(ncells*10, generations*10))
And finally, three states with a radius equal to two:
Rule 914752986721674989234787899872473589234512347899
using CellularAutomata, Plots
states = 3
radius = 2
generations = 30
ncells = 111
starting_val = zeros(ncells)
starting_val[Int(floor(ncells/2)+1)] = 2
rule = 914752986721674989234787899872473589234512347899
ca = CellularAutomaton(DCA(rule,states=states,radius=radius),
starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false,
size=(ncells*10, generations*10))
It is also possible to specify asymmetric neighborhoods, giving a tuple to the kwarg detailing the number of neighbors to considerate at the left and right of the cell: Rule 1235
using CellularAutomata, Plots
states = 2
radius = (2,1)
generations = 30
ncells = 111
starting_val = zeros(ncells)
starting_val[Int(floor(ncells/2)+1)] = 1
rule = 1235
ca = CellularAutomaton(DCA(rule,states=states,radius=radius),
starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false,
size=(ncells*10, generations*10))
Totalistic Cellular Automata takes the sum of the neighborhood to calculate the value of the next step.
using CellularAutomata, Plots
states = 3
radius = 1
generations = 50
ncells = 111
starting_val = zeros(Integer, ncells)
starting_val[Int(floor(ncells/2)+1)] = 1
rule = 1635
ca = CellularAutomaton(TCA(rule, states=states),
starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false)
using CellularAutomata, Plots
states = 4
radius = 1
generations = 50
ncells = 111
starting_val = zeros(Integer, ncells)
starting_val[Int(floor(ncells/2)+1)] = 1
rule = 107398
ca = CellularAutomaton(TCA(rule, states=states),
starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false)
Here are some results for a bigger radius, using a radius of 2 as an example.
using CellularAutomata, Plots
states = 2
radius = 2
generations = 50
ncells = 111
starting_val = zeros(Integer, ncells)
starting_val[Int(floor(ncells/2)+1)] = 1
rule = 53
ca = CellularAutomaton(TCA(rule, radius=radius),
starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false)
Continuous Cellular Automata work in the same way as the totalistic but with real values. The examples are taken from the already mentioned book NKS.
Rule 0.025
using CellularAutomata, Plots
generations = 50
ncells = 111
starting_val = zeros(Float64, ncells)
starting_val[Int(floor(ncells/2)+1)] = 1.0
rule = 0.025
ca = CellularAutomaton(CCA(rule), starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false)
Rule 0.2
using CellularAutomata, Plots
radius = 1
generations = 50
ncells = 111
starting_val = zeros(Float64, ncells)
starting_val[Int(floor(ncells/2)+1)] = 1.0
rule = 0.2
ca = CellularAutomaton(CCA(rule, radius=radius),
starting_val, generations)
heatmap(ca.evolution,
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
axis=false,
ticks=false)
This package can also reproduce Conway's Game of Life, and any variation based on it. The Life()
function takes in a tuple containing the number of neighbors that will gave birth to a new cell, or that will make an existing cell survive. (For example in the Conways's Life the tuple (3, (2,3)) indicates having 3 live neighbors will give birth to an otherwise dead cell, and having either 2 or 3 lie neighbors will make an alive cell continue living.) The implementation follows the Golly notation.
This script reproduces the famous glider:
using CellularAutomata, Plots
glider = [[0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 1, 1, 1, 0]]
space = zeros(Bool, 30, 30)
insert = 1
space[insert:insert+size(glider, 1)-1, insert:insert+size(glider, 2)-1] = glider
gens = 100
space_gliding = CellularAutomaton(Life((3, (2,3))), space, gens)
anim = @animate for i = 1:gens
heatmap(space_gliding.evolution[:,:,i],
yflip=true,
c=cgrad([:white, :black]),
legend = :none,
size=(1080,1080),
axis=false,
ticks=false)
end
gif(anim, "glider.gif", fps = 15)