ChainLadder.jl

Alpha status - not ready for use
Author JuliaActuary
Popularity
3 Stars
Updated Last
2 Years Ago
Started In
January 2021

ChainLadder

Stable Dev Build Status Coverage

Help wanted!

This package is very early in its development cycle.

Interested in developing loss reserving techniques in Julia? Consider contributing to this package. Open an issue, create a pull request, or discuss on the Julia Zulip's #actuary channel.

Quickstart

using ChainLadder
using CSV
using Test
using DataFrames

csv_data = ChainLadder.sampledata("raa")
raa = CSV.read(csv_data,DataFrame)

t = CumulativeTriangle(raa.origin,raa.development,raa.values)

lin = LossDevelopmentFactor(t)

s = square(t,lin)

total_loss(t,lin)

outstanding_loss(t,lin)

Bundled sample data

Load sample data

csv_data =ChainLadder.sampledata("raa")
raa = CSV.read(csv_data,DataFrame)
t = CumulativeTriangle(raa.origin,raa.development,raa.values)

Available datasets (courtesy of Python's chainladder):

abc
auto
berqsherm
cc_sample
clrd
genins
ia_sample
liab
m3ir5
mcl
mortgage
mw2008
mw2014
prism
quarterly
raa
tail_sample
ukmotor
usaa
usauto
xyz

Used By Packages

No packages found.