Clusterpath.jl
Julia implementation of
installation
import Pkg
Pkg.add("Clusterpath")
Quick Start
Sample procedure (with Big Merge Tracker)
-
generate_mixture_normal()
- generate
n
observations from mixture of univariate normals each with standard deviation$1$ and mean parametersm
and proportionp
.
- generate
Random.seed!(0)
x1 = generate_mixture_normal(1000, [-4.5, 4.5], [0.35, 0.65])
-
clusterpath()
- inputs:
-
x
: observation vector -
alpha
: Big Merge Tracker threshold
-
- inputs:
cc = clusterpath(x1, α=0., return_split=true)["splits"][end]
-1.3447486506416237
- Another toy data
N = 100
Random.seed!(1)
xx = [randn(N, 2) .* .5; (randn(N, 2) .* 0.3 .+ 3)]
gt = repeat([1, 2], inner=N);
-
plot_path()
- plot clusterpath with the data(
x
) and the solution path casted bycast_solution()
. - If the dimension of
x
is greater than 4, only plot combinations of first four dimensions.
Gaston.jl
andgnuplot
should be installed and on the PATH of your system. Install gnuplot here. -
x
: data -
solution
: solution path dataframe fromcast_solution()
-
gt
: ground truth labels -
savefig
: whether to save the figure as a PNG file. (default:false
) -
fname
: image file name to be used whensavefig
istrue
. (default:"path_plot"
) -
show
: whether to show the plot in the notebook. Highly recommended not to show if the number of samples is large. (default:true
)
- plot clusterpath with the data(
plot_path(xx[:, 1], α=0., gt=gt, show=true)
plot_path(xx; α=0., gt=gt, show=true)
-
plot_cluster()
- Plots the scatter plot of the data
x
colored according to the cluster assigned by clusterpath algorithm. - If the dimension of
x
is greater than 2, perform PCA and plot two PCs.
***Gaston.jl
andgnuplot
should be installed and on the PATH of your system. Install gnuplot here. *** -
x
: data -
α
: threshold for BMT-clusterpath -
n_node
: if greater than1
, will assign clusters from previous merge status. (default:1
) -
show
: whether to show the figure. -
savefig
: whether to save the figure as a png file. (default:false
) -
fname
: file name to save ifsavefig
is true. (default:"plot_clst"
) -
verbose
: print out current iteration. (default:false
)
- Plots the scatter plot of the data
plot_cluster(xx, α=0.2; show=true, savefig=false)
-
assign_clusters()
- assign cluster to each of the observations in
x
. - returns an array of length=size(x, 1) of cluster indices.
-
x
: data -
α
: threshold for BMT-clusterpath -
n_node
: if greater than1
, will assign clusters from previous merge status. (default:1
)
- assign cluster to each of the observations in
assign_cluster(xx, α=.2)'
1×200 Adjoint{Int64,Array{Int64,1}}:
1 1 1 1 1 1 1 1 1 1 1 1 1 … 2 2 2 2 2 2 2 2 2 2 2 2
Population Procedure
include("PopulationSplit.jl");
-
cond_mean_on_LR()
- Conditional mean on
$(L, R)$ , defined as$\mu_{L,R} = \big(\int_L^R f(x) dx\big)^{-1} \cdot \int_L^R x f(x) dx$
- Conditional mean on
-
find_split()
- Find a split point if
find_split=true
, or$\delta_1, \delta_2$ for truncation point searching iffind_deltas=true
.
- Find a split point if
-
find_truncation()
- Find the population split points.
-
clusterpath_pop()
- population-equivalent version of sample
clusterpath()
procedure.
- population-equivalent version of sample
splits = Array{Float64, 1}()
Lstars = Array{Float64, 1}()
Rstars = Array{Float64, 1}()
for p=0.5:0.05:0.9
cp = clusterpath_pop(p, 4.5)
push!(splits, cp["s"])
push!(Lstars, cp["L*"])
push!(Rstars, cp["R*"])
end
println([round(s, digits=2) for s in splits]')
println([round(l, digits=2) for l in Lstars]')
println([round(r, digits=2) for r in Rstars]')
[0.0 -0.45 -0.9 -1.36 -1.82 -2.31 -2.89 -3.82 NaN]
[-8.98 -8.54 -8.09 -7.63 -7.17 -6.67 -6.09 -5.18 NaN]
[8.98 9.44 9.89 10.34 10.79 11.24 11.7 12.17 NaN]
splits = Array{Float64, 1}()
for p=0.5:0.05:0.9
push!(splits, clusterpath_pop(p, 4.5)["s"])
end
splits'
1×9 Adjoint{Float64,Array{Float64,1}}:
0.0 -0.4495 -0.9005 -1.355 -1.8195 -2.314 -2.8935 -3.816 NaN
: exactly the same results as in the paper (supp. p.29 Table 1).
Footnotes
-
Radchenko, P. and Mukherjee, G. (2017), Convex clustering via l1 fusion penalization. J. R. Stat. Soc. B, 79: 1527-1546. https://doi.org/10.1111/rssb.12226
↩