DAMMmodel.jl

Visualisation, output and fitting of the DAMM model
Author CUPofTEAproject
Popularity
14 Stars
Updated Last
1 Year Ago
Started In
December 2020

DAMMmodel

Stable DAMMmodel Downloads version

Estimates CO2 efflux (e.g., soil respiration (Rs), [μmol m-2 s-1]) as a function of temperature (e.g., soil temperature (Ts), [°C]) and soil moisture (θ, [m3 m-3]).

Installation

Install with the Julia package manager Pkg, just like any other registered Julia package:

julia> ]
pkg> add DAMMmodel

or

julia> using Pkg; Pkg.add("DAMMmodel")

Usage

This package models respiration (CO2 efflux, e.g., soil respiration (Rs)) as a function of soil temperature (Ts) and soil moisture (θ), using the Dual Arrhenius and Michaelis-Menten kinetics model (2012).

The package contains six functions: DAMMviz, DAMMfdata, DAMM, DAMMfit, DAMMmat, and DAMMplot.

Examples

DAMMviz

DAMMviz()

Interactive plot of the DAMM model

julia> DAMMviz()

DAMMviz_v0 1 2

DAMMfdata

DAMMfdata(n)

Generates a DataFrame of n fake data Tₛ, θ and Rₛ

julia> DAMMfdata(5)
5×3 DataFrame
 Row │ Tₛ       θ        Rₛ      
     │ Float64  Float64  Float64 
─────┼───────────────────────────
   110.8      0.3  2.04327
   231.5      0.1  7.8925
   338.7      0.7  1.6
   435.7      0.3  7.38025
   521.9      0.2  3.0012

DAMM

DAMM(x::VecOrMat{<: Real}, p::NTuple{7, Float64})

Calculate respiration as a function of soil temperature (Tₛ) and moisture (θ).

julia> df = DAMMfdata(100) # generates a fake dataset
100×3 DataFrame
 Row │ Tₛ       θ        Rₛ        
     │ Float64  Float64  Float64   
─────┼─────────────────────────────
   115.5      0.3   1.72216
   222.3      0.6   1.8213
                   
  999.5      0.2   0.223677
 1006.6      0.6   0.730627
julia> fp # parameters: αₛₓ, Eaₛₓ, kMₛₓ, kMₒ₂, Sxₜₒₜ, Q10kM
(1.0e9, 64.0, 3.46e-8, 0.002, 0.7, 0.02, 1.0)
julia> DAMM(hcat(df.Tₛ, df.θ), fp) # μmolCO₂ m⁻² s⁻¹
100-element Vector{Float64}:
 6.023429035220588
 0.9298933641647085
 
 0.8444248717855868
 3.805243237387702

DAMMfit

DAMMfit(x::VecOrMat{<: Real}, Rₛ::Vector{Float64}, poro_val::Float64)

fit the DAMM model parameters to data.

julia> df = DAMMfdata(100) # generates a fake dataset
100×3 DataFrame
 Row │ Tₛ       θ        Rₛ        
     │ Float64  Float64  Float64   
─────┼─────────────────────────────
   127.1      0.3   4.345
   238.7      0.6  12.0106
                   
  9918.6      0.5   0.894257
 10019.4      0.4   3.79532
julia> p = DAMMfit(hcat(df.Tₛ, df.θ), df.Rₛ, 0.7) 
(2.034002955272664e10, 71.65411256289629, 9.903541279858033e-8, 0.003688664956456453, 0.7, 0.02, 1.0)
julia> DAMM(hcat(df.Tₛ, df.θ), p)
100-element Vector{Float64}:
  4.233540174412755
 10.41149919818871
  
  1.746141124513421
  1.9599317903590014

DAMMmat

DAMMmat(Tₛ::Array{Float64, 1}, θ::Array{Float64, 1}, R::Array{Float64, 1}, r::Int64)

Generates a matrix of DAMM output for gridded inputs x and y Inputs: soil temperature (Tₛ), soil moisture (θ), respiration (R), resolution (r)

julia> Tₛ = collect(15.0:2.5:40.0)
julia> θ = collect(0.2:0.05:0.7)
julia> R = [1.0, 1.2, 1.5, 2.0, 2.7, 3.8, 4.9, 6.7, 4.1, 2.0, 0.4]
julia> r = 10
julia> poro_val, params, x, y, DAMM_Matrix = DAMMmat(Tₛ, θ, R, r)
DAMMmat(Tₛ::Array{Float64, 1}, θ::Array{Float64, 1}, R::Array{Float64, 1}, r::Int64, n::Int64)

Bin data by n quantiles

julia> n = 4
julia> poro_val, Tmed, θmed, Rmed, params, x, y, DAMM_Matrix = DAMMmat(Tₛ, θ, R, r, n)

DAMMplot

DAMMplot(Tₛ::Array{Float64, 1}, θ::Array{Float64, 1}, R::Array{Float64, 1}, r::Int64)

Plot scatter of data and fitted DAMM surface

julia> df = DAMMfdata(100)
100×3 DataFrame
 Row │ Tₛ       θ        Rₛ       
     │ Float64  Float64  Float64  
─────┼────────────────────────────
   131.8      0.3  6.54735
   214.6      0.3  3.49235
                  
  9917.2      0.4  0.880441
 1005.2      0.2  0.0
julia> r = 50
julia> fig = DAMMplot(df.Tₛ, df.θ, df.Rₛ, r)

DAMMplot_v0 1 14

qbins

qbins(x, y, z, n)

Bins x into n quantiles, each xbin into n quantiles of y, return z quantile

julia> df = DataFrame(x=1:20, y=6:25, z=11:30)
julia> xmed, ymed, zmed = qbins(df.T, df.M, df.R, 3)
  xmed = [9, 9, 9, 15, 15, 15, 21, 21, 21]
  ymed = [12, 14, 16, 19, 20.5, 22, 25, 27, 29]
  zmed = [2, 4, 6, 8.5, 10.5, 15, 17, 19]

Contributing

Issues and pull requests are welcome!