EasyFit.jl

Easy interface for obtaining fits for 2D data
Author m3g
Popularity
37 Stars
Updated Last
5 Months Ago
Started In
August 2020

EasyFit

Easy interface for obtaining fits of 2D data.

The purpose of this package is to provide a very simple interface to obtain some of the most common fits of 2D data. Currently, simple fitting functions are available for linear, quadratic, cubic, exponential, and spline fits.

On the background this interface uses the LsqFit and Interpolations, which are already quite easy to use. Additionally, EasyFit contains a simple globalization heuristic, such that good non-linear fits are obtained often.

Our aim is to provide a package for quick fits without having to think about the code.

Installation

julia> ] add EasyFit

julia> using EasyFit

Contents

Read the Linear fit section first, because all the others are similar, with few specificities:

To perform a linear fitting, do:

julia> x = sort(rand(10)); y = sort(rand(10)); # some data

julia> fit = fitlinear(x,y)

 ------------------- Linear Fit ------------- 

 Equation: y = ax + b 

 With: a = 0.9245529646308137
       b = 0.08608398402393584

 Pearson correlation coefficient, R = 0.765338307304594

 Predicted y = [-0.009488291459872424, -0.004421217036880542... 
 Residues = [-0.08666886144188027, -0.12771486789744962... 

 -------------------------------------------- 

The fit data structure which comes out of fitlinear contains the output data with the same names as shown in the above output:

julia> fit.a
0.9245529646308137

julia> fit.b
0.08608398402393584

julia> fit.R
0.765338307304594

The fit.x and fit.y vectors can be used for plotting the results:

julia> using Plots

julia> scatter(x,y) # the original data

julia> plot!(fit.x,fit.y) # the fit

Use the fitquad function:

julia> fitquad(x,y)  # or fitquadratic(x,y)

 ------------------- Quadratic Fit ------------- 

 Equation: y = ax^2 + bx + c 

 With: a = 0.935408728589832
       b = 0.07985866671623199
       c = 0.08681962205579699

 Pearson correlation coefficient, R = 0.765338307304594

 Predicted y = [0.08910633345247763, 0.08943732276526263...
 Residues = [0.07660191693062993, 0.07143385689027287...

 ----------------------------------------------- 

Use the fitcubic function:

julia> fitcubic(x,y) 

 ------------------- Cubic Fit ----------------- 

 Equation: y = ax^3 + bx^2 + cx + d 

 With: a = 1.6860182468269271
       b = -2.197790204605215
       c = 1.431666717127516
       d = -0.10389199522825227

 Pearson correlation coefficient, R = 0.765338307304594

 Predicted Y: ypred = [0.024757602237563042, 0.1762724543346461...
 residues = [-0.021614675301217884, 0.0668157091306878...

 ----------------------------------------------- 

N-th degree polynomial fit

Use the fitndgr function:

julia> fitndgr(x,y,4)

------------- n-th degree polynomial degree Fit -------------

Equation: y = sum(p[i] * x^(i-1) for i in n+1:-1:1)

With: p = [1.0000000000011207, 1.99999999996782, 3.0000000001850315, 3.999999999655522, 6.000000000197637]

Pearson correlation coefficient, R = 1.0
Average square residue = 2.2956403558488966e-25

Predicted Y: ypred = [ 1.036097252072566, 1.23390364829286, ...]
residues = [ 6.104006189389111e-13, -5.706546346573305e-13, ...]

-------------------------------------------------------------

Use the fitexp function:

julia> fitexp(x,y) # or fitexponential

 ------------ Single Exponential fit ----------- 

 Equation: y = A exp(x/b) + C

 With: A = 0.08309782657193134
       b = 0.4408664103095801
       C = 1.4408664103095801

 Pearson correlation coefficient, R = 0.765338307304594

 Predicted Y: ypred = [0.10558554154948542, 0.16605481935145136...
 residues = [0.059213264010704494, 0.056598074147493044...

 ----------------------------------------------- 

or add n=N for a multiple-exponential fit:

julia> fit = fitexp(x,y,n=3)

 -------- Multiple-exponential fit ------------- 

 Equation: y = sum(A[i] exp(x/b[i]) for i in 1:3) + C

 With: A = [2.0447736471832363e-16, 3.165225832379937, -3.2171314371600785]
       b = [0.02763465220057311, -46969.25088088338, -4.403370258345724]
       C = 3.543252432454542

 Pearson correlation coefficient, R = 0.765338307304594

 Predicted Y: ypred = [0.024313571992034433, 0.1635108558614995...
 residues = [-0.022058705546746493, 0.05405411065754118...

 ----------------------------------------------- 

The fitting of splines requires the use of the Interpolations package (this explicit requirement was introduced in version 0.6 of EasyFit, and depends on julia >= 1.9).

To use the fitspline function, do:

julia> using EasyFit, Interpolations

julia> fit = fitspline(x,y)

 -------- Spline fit --------------------------- 

 x spline: x = [0.10558878272489601, 0.1305310750202113...
 y spline: y = [0.046372277538780926, 0.05201906296544364...

 ----------------------------------------------- 

Use plot(fit.x,fit.y) to plot the spline.

Use the movavg (or movingaverage) function:

julia> ma = movavg(x,50)

 ------------------- Moving Average ----------

 Number of points averaged: 51 (± 25 points)

 Pearson correlation coefficient, R = 0.9916417123050962

 Averaged Y: y = [0.14243985510210114, 0.14809841636897675...
 residues = [-0.14230394758154755, -0.12866864179092025...

 --------------------------------------------

Use plot(ma.x,ma.y) to plot the moving average.

Use the fitdensity to obtain the density function (continuous histogram) of a data set x:

julia> x = randn(1000)

julia> density = fitdensity(x)

 ------------------- Density -------------

  d contains the probability of finding data points within x ± 0.25

 -----------------------------------------

Options are the step size (step=0.5) and normalization type (probability by default, with norm=1 or number of data points, with norm=0).

Example:

julia> x = randn(1000);

julia> density = fitdensity(x,step=0.5,norm=0);

julia> histogram(x,xlabel="x",ylabel="Density",label="",alpha=0.3,framestyle=:box);

julia> plot!(density.x,density.d,linewidth=2);

Lower and upper bounds can be set to the parameters of each function using the l=lower() and u=upper() input parameters. For example:

julia> fit = fitlinear(x,y,l=lower(a=5.),u=upper(a=10.))
julia> fit = fitexp(x,y,n=2,l=lower(a=[0.,0]),u=upper(a=[1.,1.]))

Bounds to the intercepts or limiting values are not supported, but it is possible to set them to a constant value. For example:

julia> fit = fitlinear(x,y,b=5.)
julia> fit = fitexp(x,y,n=2,c=0.)

This figure was obtained using Plots, after obtaining a fit of each type, with

julia> scatter!(x,y) # plot original data
julia> plot!(fit.x,fit.y) # plot the resulting fit

The complete script is available at: plots.jl

It is possible to pass an optional set of parameters to the functions. Use, for example:

julia> fitexp(x,y,options=Options(maxtrials=1000))

Available options:

Keyword Type Default value Meaning
fine Int 100 Number of points of fit to smooth plot.
p0_range Vector{Float64,2} [-100*(maximum(Y)-minimum(Y)), 100*(maximum(Y)-minimum(Y))] Range of generation of initial random parameters.
nbest Int 5 Number of repetitions of best solution in global search.
besttol Float64 1e-4 Similarity of the sum of residues of two solutions such that they are considered the same.
maxtrials Int 100 Maximum number of trials in global search.
debug Bool false Prints errors of failed fits.

Used By Packages