GaussNewton.jl

Klare and Miller Gauss-Newton Minimizer
Author fabienlefloch
Popularity
2 Stars
Updated Last
8 Months Ago
Started In
December 2021

GaussNewton.jl

Status Coverage
Build Status codecov.io

Klare and Miller Gauss-Newton Minimizer. Minimize sum of squares of residuals r using augmented Gauss-Newton step and Levenberg-Marquardt trust region. Uses finite-difference derivatives and 1-D Jacobian updates.

This is a port of Fortran90 Netlib.org/misc/gn code originally from Kenneth Klare (kklare@gmail.com) and Guthrie Miller (guthriemiller@gmail.com).

Usage

The simple syntax mirrors the Optim.jl package syntax

using GaussNewton
function rosenbrock(x)
	[1 - x[1], 100 * (x[2]-x[1]^2)]
end
x0 = zeros(2)
optimize(rosenbrock, x0)

A more optimized and powerful in place syntax is also possible, where the jacobian calculation may be passed as parameter:

using GaussNewton
function rosenbrock!(r,x)
	r[1] = 1 - x[1]
    r[2] = 100 * (x[2]-x[1]^2)
end
function rosenbrockDer!(J,x)
	J[1,1] = -1
    J[2,1] = -200*x[1]
    J[1,2] = 0
    J[2,2] = 100
end

x0 = zeros(2)
r = zeros(2) #output
optimize!(rosenbrock!, rosenbrockDer!, x0, r)

where the rosenbrockDer! is optional, and may be automatically computed through the autodiff parameter.

Additional optional parameters are:

  • stptol: step size for relative convergence test.
  • reltol, abstol: value relative/absolute convergence test.
  • derivstp in: the step for derivatives in autodiff = :single mode Must be large enough to get some change in the function. Must be small enough for some accuracy in the derivative.
  • limit in: maximum number of all evaluations allowed, approximate.
  • tuning constants:
    • ZLOW,ZHIGH change bounds of trust region (del) (.5,2). Small changes in the path set by them greatly affect results.
    • ZCP Cauchy step size (1).
    • ZCPMIN minimum Cauchy step size (0.1).
    • ZCPMAX maximum Cauchy step size (1000).
    • MXBAD number bad steps with rank-1 updates (1).
  • NewtStep1st=true start with Newton step. Use on linear problems.
  • iscale=0, no scaling, iscale=1, variable scaling, iscale=2, fixed scaling based on D0, which must be allocated

The function returns the final sum of squares, and the minimum is stored in x0. In addition, it returns a detailed result structure from which success may be inferred through

  • is_fatal(result::GNResult) if a fatal error occured
  • has_converged(result::GNResult) = has_converged_abstol(result) || has_converged_reltol(result) || has_converged_stptol(result)
  • has_converged_stptol(result::GNResult)
  • has_converged_reltol(result::GNResult)
  • has_converged_abstol(result::GNResult)

autodiff parameter

if the explicit jacobian calculation fcnDer! is not passed as a parameter (is nothing), then the parameter autodiff controls how the jacobian is calculated:

  • autodiff = :forward uses the ForwarDiff package to compute the jacobian by automatic forward differentiation,
  • autodiff = :centered uses the FiniteDiff package to compute the jacobian
  • autodiff = :single for single sided finite difference, as per the original code of Klare and Miller.

Used By Packages

No packages found.