This program comes with absolutely no warranty. No liability is accepted for any loss and risk to public health resulting from use of this software.
Version | pkgeval | Cover | Build | Docs |
---|---|---|---|---|
Metida.jl is Julia package for fitting mixed-effects models with flexible covariance structure.
Install:
import Pkg; Pkg.add("Metida")
Using:
using Metida, CSV, DataFrames, CategoricalArrays
df = CSV.File(joinpath(dirname(pathof(Metida)),"..","test","csv","df0.csv")) |> DataFrame
transform!(df, :subject => categorical, renamecols=false)
transform!(df, :period => categorical, renamecols=false)
transform!(df, :sequence => categorical, renamecols=false)
transform!(df, :formulation => categorical, renamecols=false)
lmm = LMM(@formula(var~sequence+period+formulation), df;
random = VarEffect(@covstr(formulation|subject), CSH),
repeated = VarEffect(@covstr(formulation|subject), DIAG),
)
fit!(lmm)
# Or you can use macro @lmmformula
lmm = LMM(@lmmformula(var~sequence+period+formulation,
random = formulation|subject:CSH,
repeated = formulation|subject:DIAG),
df0)
fit!(lmm)
Also you can use this package with MatidaNLopt.jl and MetidaCu.jl.
See also MixedModels.jl: powerful package for mixed models.
Copyright © 2020 Metida Author: Vladimir Arnautov mail@pharmcat.net