NeutralLandscapes.jl

Generation of neutral landscapes in Julia.
Author EcoJulia
Popularity
15 Stars
Updated Last
7 Months Ago
Started In
February 2021

Neutral Landscapes

This packages allows the generation of neutral landscapes in Julia. It is a port of the NLMPy package, which is described in greater detail at:

Etherington, T.R., Holland, E.P. & O’Sullivan, D. (2015) NLMpy: a python software package for the creation of neutral landscape models within a general numerical framework. Methods in Ecology and Evolution, 6, 164–168.

GitHub last commit GitHub latest release GitHub release date

GitHub license GitHub contributors Codecov GitHub issues GitHub pull requests

Doc stable Doc dev

All landscapes are generated using an overload of the rand (or rand!) method, taking as arguments a NeutralLandscapeGenerator, as well as a dimension and a Boolean mask if required. The additional functions classify and blend are used to respectively discretize the network, or merge the result of different neutral generators.

The code below reproduces figure 1 of Etherington et al. (2015):

using NeutralLandscapes, Plots
siz = 50, 50

# Random NLM
Fig1a = rand(NoGradient(), siz)
# Planar gradient NLM
Fig1b = rand(PlanarGradient(), siz)
# Edge gradient NLM
Fig1c = rand(EdgeGradient(), siz)
# Mask example
Fig1d = falses(siz)
Fig1d[10:25, 10:25] .= true
# Distance gradient NLM
Fig1e = rand(DistanceGradient(findall(vec(Fig1d))), siz)
# Midpoint displacement NLM
Fig1f = rand(MidpointDisplacement(0.75), siz)
# Random rectangular cluster NLM
Fig1g = rand(RectangularCluster(4, 8), siz)
# Random element nearest-neighbor NLM
Fig1h = rand(NearestNeighborElement(200), siz)
# Random cluster nearest-neighbor NLM
Fig1i = rand(NearestNeighborCluster(0.4), siz)
# Blended NLM
Fig1j = blend([Fig1f, Fig1c])
# Patch blended NLM
Fig1k = blend(Fig1h, Fig1e, 1.5)
# Classifiend random cluster nearest-neighbor NLM
Fig1l = classify(Fig1i, ones(4))
# Percolation NLM
Fig1m = classify(Fig1a, [1-0.5, 0.5])
# Binary random rectangular cluster NLM
Fig1n = classify(Fig1g, [1-0.75, 0.75])
# Classified midpoint displacement NLM
Fig1o = classify(Fig1f, ones(3))
# Classified midpoind displacement NLM, with limited classification
Fig1p = classify(Fig1f, ones(3), Fig1d)
# Masked planar gradient NLM
Fig1q = rand(PlanarGradient(90), siz, mask = Fig1n .== 2) #TODO mask as keyword + should mask be matrix or vec or both? (Fig1e)
# Hierarchical NLM
Fig1r = ifelse.(Fig1o .== 2, Fig1m .+ 2, Fig1o)
# Rotated NLM
Fig1s = rotr90(Fig1l)
# Transposed NLM
Fig1t = Fig1o'

class = cgrad(:Set3_4, 4, categorical = true)
c2, c3, c4 = class[1:2], class[1:3], class[1:4]

gr(color = :fire, ticks = false, framestyle = :box, colorbar = false)
plot(
    heatmap(Fig1a),         heatmap(Fig1b),         heatmap(Fig1c),         heatmap(Fig1d, c = c2), heatmap(Fig1e),
    heatmap(Fig1f),         heatmap(Fig1g),         heatmap(Fig1h),         heatmap(Fig1i),         heatmap(Fig1j), 
    heatmap(Fig1k),         heatmap(Fig1l, c = c4), heatmap(Fig1m, c = c2), heatmap(Fig1n, c = c2), heatmap(Fig1o, c = c3),
    heatmap(Fig1p, c = c4), heatmap(Fig1q),         heatmap(Fig1r, c = c4), heatmap(Fig1s, c = c4), heatmap(Fig1t, c = c3),
    layout = (4,5), size = (1600, 1270)
)

Fig1