NonNegLeastSquares.jl
Some nonnegative least squares solvers in Julia.
Basic Usage:
The command X = nonneg_lsq(A,B)
solves the optimization problem:
Minimize ||A*X - B||
subject to Xᵢⱼ >= 0
; in this case,
where ||.||
denotes the Frobenius norm (equivalently, the Euclidean norm if B
is a column vector).
The arguments A
and B
are respectively (m × k) and (m × n) matrices, so X
is a (k × n) matrix.
Currently Implemented Algorithms:
The code defaults to the "Pivot Method" algorithm.
To specify a different algorithm, use the keyword argument alg
. Currently implemented algorithms are:
nonneg_lsq(A,b;alg=:nnls) # NNLS
nonneg_lsq(A,b;alg=:fnnls) # Fast NNLS
nonneg_lsq(A,b;alg=:pivot) # Pivot Method
nonneg_lsq(A,b;alg=:pivot,variant=:cache) # Pivot Method (cache pseudoinverse up front)
nonneg_lsq(A,b;alg=:pivot,variant=:comb) # Pivot Method with combinatorial least-squares
Default algorithm:
nonneg_lsq(A,b) # pivot method
The keyword Gram
specifies whether the inputs are Gram matrices (as shown in the examples below).
This defaults to false
.
nonneg_lsq(A'*A,A'*b;alg=:nnls,gram=true) # NNLS
nonneg_lsq(A'*A,A'*b;alg=:fnnls,gram=true) # Fast NNLS
References
- NNLS:
- Lawson, C.L. and R.J. Hanson, Solving Least-Squares Problems, Prentice-Hall, Chapter 23, p. 161, 1974.
- Fast NNLS:
- Bro R, De Jong S. A fast non-negativitity-constrained least squares algorithm. Journal of Chemometrics. 11, 393–401 (1997)
- Pivot Method:
- Kim J, Park H. Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM Journal on Scientific Computing 33.6 (2011): 3261-3281.
Installation:
Pkg.add("NonNegLeastSquares")
Pkg.test("NonNegLeastSquares")
Simple Example:
using NonNegLeastSquares
A = [ -0.24 -0.82 1.35 0.36 0.35
-0.53 -0.20 -0.76 0.98 -0.54
0.22 1.25 -1.60 -1.37 -1.94
-0.51 -0.56 -0.08 0.96 0.46
0.48 -2.25 0.38 0.06 -1.29 ];
b = [-1.6, 0.19, 0.17, 0.31, -1.27];
x = nonneg_lsq(A,b)
Produces:
5-element Array{Float64,1}:
2.20104
1.1901
0.0
1.55001
0.0
Speed Comparisons:
Run the examples/performance_check.jl
script to compare the various algorithms that have been implemented on some synthetic data.
Note that the variants :cache
and :comb
of the pivot method improve performance substantially
when the inner dimension, k
, is small.
For example, when m = 5000
and n = 5000
and k=3
:
Comparing pivot:none to pivot:comb with A = randn(5000,3) and B = randn(5000,5000)
-------------------------------------------------------------------------------------
PIVOT:none → 2.337322 seconds (1.09 M allocations: 4.098 GB, 22.74% gc time)
PIVOT:comb → 0.096450 seconds (586.76 k allocations: 23.569 MB, 3.01% gc time)
Algorithims That Need Implementing:
Pull requests are more than welcome, whether it is improving existing algorithms, or implementing new ones.
- Dongmin Kim, Suvrit Sra, and Inderjit S. Dhillon: A New Projected Quasi-Newton Approach for the Nonnegative Least Squares Problem. UT Austin TR-06-54, circa 2007.
- Sra Suvrit Kim Dongmin and Inderjit S. Dhillon. A non-monotonic method for large-scale non-negative least squares. Optimization Methods and Software, 28(5):1012–1039, 2013.