PolyLog.jl

Implementation of polylogarithms in Julia
Author Expander
Popularity
8 Stars
Updated Last
7 Months Ago
Started In
March 2021

PolyLog.jl

test coverage

The PolyLog.jl package provides Julia implementations of real and complex polylogarithms, including the real and complex dilogarithm and trilogarithm.

Example

using PolyLog

# real polylogarithms for real arguments
reli1(1.0)          # Re[Li_1(x)]
reli2(1.0)          # Re[Li_2(x)] (dilogarithm)
reli3(1.0)          # Re[Li_3(x)] (trilogarithm)
reli4(1.0)          # Re[Li_4(x)]
reli(10, 1.0)       # Re[Li_n(x)] for all integers n (here: n = 10)
reli(10, big"1.0")  # Re[Li_n(x)] for all integers n (here: n = 10)
reli(-2, 1.0)       # Re[Li_n(x)] for all integers n (here: n = -2)

# complex polylogarithms for real or complex arguments
li0(1.0 + 1.0im)       # Li_0(z)
li1(1.0 + 1.0im)       # Li_1(z)
li2(1.0 + 1.0im)       # Li_2(z) (dilogarithm)
li3(1.0 + 1.0im)       # Li_3(z) (trilogarithm)
li4(1.0 + 1.0im)       # Li_4(z)
li5(1.0 + 1.0im)       # Li_5(z)
li6(1.0 + 1.0im)       # Li_6(z)
li(10, 1.0 + 1.0im)    # Li_n(z) for all integers n (here: n = 10)
li(10, big"1.0" + 1im) # Li_n(z) for all integers n (here: n = 10)
li(-2, 1.0 + 1.0im)    # Li_n(z) for all integers n (here: n = -2)

Example using ForwardDiff

using ForwardDiff, PolyLog

ForwardDiff.derivative(reli1, 0.5)                 # Re[Li_1]'(x)
ForwardDiff.derivative(reli2, 0.5)                 # Re[Li_2]'(x)
ForwardDiff.derivative(reli3, 0.5)                 # Re[Li_3]'(x)
ForwardDiff.derivative(reli4, 0.5)                 # Re[Li_4]'(x)
ForwardDiff.derivative(x -> reli(10, x), 0.5)      # Re[Li_n]'(x) for n = 10
ForwardDiff.derivative(x -> reli(10, x), big"0.5") # Re[Li_n]'(x) for n = 10
ForwardDiff.derivative(x -> reli(-2, x), 0.5)      # Re[Li_n]'(x) for n = -2

Documentation

https://docs.juliahub.com/PolyLog/

Notes

The implementation of the real dilogarithm is an adaptation of [arXiv:2201.01678].

The implementation of the complex dilogarithm has been inspired by the implementation in SPheno and has been translated to Julia.

The implementation of the real trilogarithm is an adaptation of [arXiv:2308.11619].

The implementation of the general n-th order polylogarithm is an adaptation of [arXiv:2010.09860].

Contributors

Copying

PolyLog.jl is licenced under the MIT License.

Links

Refer to the package Polylogarithms.jl for a Julia implementation of polylogarithms of arbitrary complex order.

Required Packages

No packages found.