SelfConcordantSmoothOptimization.jl

Self-concordant Smoothing for Large-Scale Convex Composite Optimization
Author adeyemiadeoye
Popularity
0 Stars
Updated Last
9 Months Ago
Started In
May 2023

SelfConcordantSmoothOptimization.jl

SelfConcordantSmoothOptimization.jl is a Julia package that implements the self-concordant regularization (SCORE) technique for (nonsmooth) convex optimization. In particular, SelfConcordantSmoothOptimization.jl considers problems of the form

minimize f(x) + g(x)

where $\mathrm{f}\colon \mathbb{R}^n \to \mathbb{R}$ is smooth and convex, and $\mathrm{g}\colon \mathbb{R}^n \to \mathbb{R}$, which may be nonsmooth, is proper, closed and convex. The smooth part $\mathrm{f}$ defines the problem's objective function, such as quantifying a data-misfit, while the nonsmooth part $\mathrm{g}$ imposes certain properties, such as sparsity, on the decision variable $\mathrm{x}$. Please see Implementation details and recommendations for functions that are currently supported for each implemented algorithm.

Installation

Install the package via Julia's REPL with

using Pkg

Pkg.add("SelfConcordantSmoothOptimization")

Usage example

A simple sparse logistic regression problem

# Load the package
using SelfConcordantSmoothOptimization

using Random, Distributions, SparseArrays

# Generate a random data
Random.seed!(1234)
n, m = 100, 50;
A = Matrix(sprandn(n, m, 0.01));
y_prob = 1 ./ (1 .+ exp.(-A * zeros(m)));
y = rand.(Bernoulli.(y_prob));
unique_y = unique(y); 
y = map(x -> x==unique_y[1] ? -1 : 1, y);
x0 = randn(m);

# Define objective function and choose problem parameters
f(A, y, x) = 1/m*sum(log.(1 .+ exp.(-y .* (A*x))));

# choose problem parameters
reg_name = "l1";
λ = 0.4;
μ = 1.0;
hμ = PHuberSmootherL1L2(μ);

# set problem
model = Problem(A, y, x0, f, λ);

# Choose method and run the solver (see ProxGGNSCORE below)
method = ProxNSCORE();
solution = iterate!(method, model, reg_name, hμ; max_epoch=100, x_tol=1e-6, f_tol=1e-6);
# get the solution x
solution.x

To use the ProxGGNSCORE algorithm, a model output function $\mathcal{M}(A,x)$ is required (Note that it is essential to define the function f in two ways to use ProxGGNSCORE; Julia will decide which one to use at any instance -- thanks to the multiple dispatch feature):

# f as defined above
f(A, y, x) = 1/m*sum(log.(1 .+ exp.(-y .* (A*x))));
# f as a function of y and yhat
f(y, yhat) = -1/m*sum(y .* log.(yhat) .+ (1 .- y) .* log.(1 .- yhat))
# where yhat = Mfunc(A, x) is defined by the model output function
Mfunc(A, x) = vcat([1 ./ (1 .+ exp.(-A*x))]...)
# set problem
model = Problem(A, y, x0, f, λ; out_fn=Mfunc);

# Choose method and run the solver
method = ProxGGNSCORE();
solution = iterate!(method, model, reg_name, hμ; max_epoch=100, x_tol=1e-6, f_tol=1e-6);
# get the solution x
solution.x

By default, this package computes derivatives using ForwardDiff.jl. But users can supply functions that compute the derivates involved in the algorithms. This has at least two benefits:

  1. Faster computations
  2. Avoid the need to define $\mathrm{f}$ twice when using ProxGGNSCORE

In the example above:

f(A, y, x) = 1/m*sum(log.(1 .+ exp.(-y .* (A*x))));

S(x) = exp.(-y .* (A*x));
# gradient of f wrt x:
function grad_fx(A, y, x)
    Sx = S(x)
    return -A' * (y .* (Sx ./ (1 .+ Sx))) / m
end;
# Hessian of f wrt x:
function hess_fx(A, y, x)
    Sx = 1 ./ (1 .+ S(x))
    W = Diagonal(Sx .* (1 .- Sx))
    hess = A' * W * A
    return hess / m
end;

# The following are used by ProxGGNSCORE
# Jacobian of yhat wrt x:
jac_yx(A, y, yhat, x) = vec(yhat .* (1 .- yhat)) .* A;
# gradient of \ell wrt yhat:
grad_fy(A, y, yhat) = (-y ./ yhat .+ (1 .- y) ./ (1 .- yhat))/m;
# Hessian of \ell wrt yhat:
hess_fy(A, y, yhat) = Diagonal((y ./ yhat.^2 + (1 .- y) ./ (1 .- yhat).^2)/m);
# Now (for ProxNSCORE):
model_n = Problem(A, y, x0, f, λ; grad_fx=grad_fx, hess_fx=hess_fx);
method_n = ProxNSCORE();
sol_n = iterate!(method_n, model_n, reg_name, hμ; max_epoch=100, x_tol=1e-6, f_tol=1e-6);
sol_n.x
# And for ProxGGNSCORE (does not require hess_fx):
model_ggn = Problem(A, y, x0, f, λ; out_fn=Mfunc, grad_fx=grad_fx, jac_yx=jac_yx, grad_fy=grad_fy, hess_fy=hess_fy);
method_ggn = ProxGGNSCORE();
sol_ggn = iterate!(method_ggn, model_ggn, reg_name, hμ; max_epoch=100, x_tol=1e-6, f_tol=1e-6);
sol_ggn.x

(For sparse group lasso example, see example from paper in /examples/paper).

Implementation details and recommendations

Below is a summary of functions $\mathrm{f}$ supported by the algorithms implemented in the package:

Algorithm Supported $\mathrm{f}$
ProxNSCORE
  • Any twice continuously differentiable function.
  • ProxGGNSCORE
  • Any twice continuously differentiable function that can be expressed in the form $f(x) = \sum\limits_{i=1}^{m}\ell(y_i,\hat{y}_i)$ where $\ell$ is a loss function that measures a data-misfit.
  • Requires a model $\mathcal{M}(A,x)$ that computes the predictions $\hat{y}_i$.
  • ProxQNSCORE
  • Any twice continuously differentiable function (currently not recommended).
  • Currently not recommended.
  • Optional arguments

    Arg Description & usage
    ss_type
  • Value 1 and with a given L in Problem sets $\mathrm{\alpha}=\min{1/L, 1}$.
  • Value 1 without setting L in Problem sets $\mathrm{\alpha}$ to the value in iterate! (or a default value $0.5$ if not set).
  • Value 2 uses the "inverse" of Barzilai-Borwein method to set $\mathrm{\alpha}$ (Not recommended).
  • Value 3 uses a line-search method to choose $\mathrm{\alpha}$.
  • Default value: 1.
  • e.g. method = ProxGGNSCORE(ss_type=1)
  • use_prox
  • Value true uses the proximal scheme as described in the paper.
  • Value false skips the proximal step and takes only the associated Newton-type/gradient-based step.
  • Default value: true.
  • e.g. method = ProxGGNSCORE(use_prox=true)
  • As the package name and description imply, the implemented algorithms use a generalized self-concordant smooth approximation $\mathrm{g_s}$ of $\mathrm{g}$ in their procedures. The algorithms do this for specific regularization functions that are specified by reg_name that takes a string value in the iterate! function. We summarize below currently implemented regularization functions, as well as the corresponding smoothing functions $\mathrm{g_s}$.

    reg_name value Implemented $\mathrm{g_s}$ function(s) Remark(s)
    "l1"
  • PHuberSmootherL1L2(μ)
  • OsBaSmootherL1L2(μ)
  • $\mathrm{\mu}>0$
    "l2"
  • PHuberSmootherL1L2(μ)
  • OsBaSmootherL1L2(μ)
  • $\mathrm{\mu}>0$
    "gl"
  • PHuberSmootherGL(μ, model)
  • For sparse group lasso regularizer
    $\mathrm{\mu}>0$
    "indbox"
  • ExponentialSmootherIndBox(lb,ub,μ)
  • PHuberSmootherIndBox(lb,ub,μ)
  • lb: lower bound in the box constraints
    ub: upper bound in the box constraints
    $\mathrm{\mu}>0$

    Note

    PHuberSmootherL1L2, PHuberSmootherGL, ExponentialSmootherIndBox are recommended.

    For more details and insights on the approach implemented in this package, please see the associated paper in Citing below.

    Citing

    If you use SelfConcordantSmoothOptimization.jl in your work, particularly the algorithms listed above, we kindly request that you cite the following paper:

    @article{adeoye2023self,
      title={Self-concordant Smoothing for Large-Scale Convex Composite Optimization},
      author={Adeoye, Adeyemi D and Bemporad, Alberto},
      journal={arXiv preprint arXiv:2309.01781},
      year={2024}
    }
    

    Contributing

    Please use the Github issue tracker for reporting any issues. All types of issues are welcome including bug reports, feature requests, implementation for a specific research problem, etc.