SoleLogics.jl

Computational logic in Julia!
Author aclai-lab
Popularity
14 Stars
Updated Last
5 Months Ago
Started In
April 2022

SoleLogics.jl – Computational logic in Julia

Stable Dev Build Status codecov Binder

In a nutshell

SoleLogics.jl provides a fresh codebase for computational logic, featuring easy manipulation of:

  • Propositional and (multi)modal logics (atoms, logical constants, alphabets, grammars, crisp/fuzzy algebras);
  • Logical formulas (parsing, random generation, minimization);
  • Logical interpretations (e.g., propositional valuations, Kripke structures);
  • Algorithms for finite model checking, that is, checking that a formula is satisfied by an interpretation.

Usage

using Pkg; Pkg.add("SoleLogics")
using SoleLogics

Parsing and manipulating Formulas

julia> φ1 = parseformula("¬p∧q∧(¬s∧¬z)");

julia> φ1 isa SyntaxTree
true

julia> syntaxstring(φ1)
"¬p ∧ q ∧ ¬s ∧ ¬z"

julia> φ2 = Atom("t")  φ1;

julia> φ2 isa SyntaxTree
true

julia> syntaxstring(φ2)
"(⊥ ∨ t) → (¬p ∧ q ∧ ¬s ∧ ¬z)"

Generating random formulas

julia> using Random

julia> height = 2

julia> alphabet = Atom.(["p", "q"])

# Propositional case 
julia> SoleLogics.BASE_PROPOSITIONAL_CONNECTIVES
6-element Vector{SoleLogics.Connective}:
 ¬
 
 
 

julia> randformula(Random.MersenneTwister(507), height, alphabet, SoleLogics.BASE_PROPOSITIONAL_CONNECTIVES)
SyntaxBranch: ¬(q  p)

# Modal case
julia> SoleLogics.BASE_MODAL_CONNECTIVES
8-element Vector{SoleLogics.Connective}:
 ¬
 
 
 
 ◊
 □

julia> randformula(Random.MersenneTwister(14), height, alphabet, SoleLogics.BASE_MODAL_CONNECTIVES)
SyntaxBranch: ¬□p

Model checking

Propositional logic

julia> phi = parseformula("¬(p ∧ q)")
SyntaxBranch: ¬(p  q)

julia> I = TruthDict(["p" => true, "q" => false])
┌────────┬────────┐
│      q │      p │
│ String │ String │
├────────┼────────┤
│  falsetrue │
└────────┴────────┘

julia> check(phi, I)
true

Modal logic K (Saul Kripke, see an introduction here)

julia> using Graphs

# Instantiate a Kripke frame with 5 worlds and 5 edges
julia> worlds = SoleLogics.World.(1:5);

julia> edges = Edge.([(1,2), (1,3), (2,4), (3,4), (3,5)]);

julia> fr = SoleLogics.ExplicitCrispUniModalFrame(worlds, Graphs.SimpleDiGraph(edges))
SoleLogics.ExplicitCrispUniModalFrame{SoleLogics.World{Int64}, SimpleDiGraph{Int64}} with
- worlds = ["1", "2", "3", "4", "5"]
- accessibles = 
        1 -> [2, 3]
        2 -> [4]
        3 -> [4, 5]
        4 -> []
        5 -> []

# Enumerate the world that are accessible from the first world
julia> accessibles(fr, first(worlds))
2-element Vector{SoleLogics.World{Int64}}:
 SoleLogics.World{Int64}(2)
 SoleLogics.World{Int64}(3)

julia> p,q = Atom.(["p", "q"])

 # Assign each world a propositional interpretation
julia> valuation = Dict([
	        worlds[1] => TruthDict([p => true, q => false]),
	        worlds[2] => TruthDict([p => true, q => true]),
	        worlds[3] => TruthDict([p => true, q => false]),
	        worlds[4] => TruthDict([p => false, q => false]),
	        worlds[5] => TruthDict([p => false, q => true]),
	     ])

# Instantiate a Kripke structure by combining a Kripke frame and the propositional interpretations over each world
julia> K = KripkeStructure(fr, valuation)

# Generate a modal formula
julia> modphi = parseformula("◊(p ∧ q)")

# Check the just generated formula on each world of the Kripke structure
julia> [w => check(modphi, K, w) for w in worlds]
5-element Vector{Pair{SoleLogics.World{Int64}, Bool}}:
 SoleLogics.World{Int64}(1) => 1
 SoleLogics.World{Int64}(2) => 0
 SoleLogics.World{Int64}(3) => 0
 SoleLogics.World{Int64}(4) => 0
 SoleLogics.World{Int64}(5) => 0

Temporal modal logics

# A temporal frame of 10 (equidistant) points
julia> fr = SoleLogics.FullDimensionalFrame((10,), SoleLogics.Point{1,Int});

# Linear Temporal Logic (LTL) `successor` relation
julia> accessibles(fr, SoleLogics.Point(3), SoleLogics.SuccessorRel) |> collect
1-element Vector{SoleLogics.Point{1, Int64}}:4# Linear Temporal Logic (LTL) `greater than` relation
julia> accessibles(fr, SoleLogics.Point(3), SoleLogics.GreaterRel) |> collect
7-element Vector{SoleLogics.Point{1, Int64}}:4❯
 ❮5❯
 ❮6❯
 ❮7❯
 ❮8❯
 ❮9❯
 ❮10
# An interval temporal frame on 10 (equidistant) points
julia> fr = SoleLogics.FullDimensionalFrame(10);

# Interval Algebra (IA) relation `L` (later, see [Halpern & Shoham, 1991](https://dl.acm.org/doi/abs/10.1145/115234.115351))
julia> accessibles(fr, Interval(3,5), IA_L) |> collect
15-element Vector{Interval{Int64}}:
 Interval{Int64}(6, 7)
 Interval{Int64}(6, 8)
 Interval{Int64}(7, 8)
 Interval{Int64}(6, 9)
 Interval{Int64}(7, 9)
 Interval{Int64}(8, 9)
 Interval{Int64}(6, 10)
 Interval{Int64}(7, 10)
 Interval{Int64}(8, 10)
 Interval{Int64}(9, 10)
 Interval{Int64}(6, 11)
 Interval{Int64}(7, 11)
 Interval{Int64}(8, 11)
 Interval{Int64}(9, 11)
 Interval{Int64}(10, 11)

# Region Connection Calculus relation `DC` (disconnected, see [Cohn et al., 1997](https://link.springer.com/article/10.1023/A:1009712514511))
julia> accessibles(fr, Interval(3,5), Topo_DC) |> collect
 16-element Vector{Interval{Int64}}:
 Interval{Int64}(6, 7)
 Interval{Int64}(6, 8)
 Interval{Int64}(7, 8)
 Interval{Int64}(6, 9)
 Interval{Int64}(7, 9)
 Interval{Int64}(8, 9)
 Interval{Int64}(6, 10)
 Interval{Int64}(7, 10)
 Interval{Int64}(8, 10)
 Interval{Int64}(9, 10)
 Interval{Int64}(6, 11)
 Interval{Int64}(7, 11)
 Interval{Int64}(8, 11)
 Interval{Int64}(9, 11)
 Interval{Int64}(10, 11)
 Interval{Int64}(1, 2)

About

SoleLogics.jl lays the logical foundations for Sole.jl, an open-source framework for symbolic machine learning, originally designed for machine learning based on modal logics (see Eduard I. Stan's PhD thesis 'Foundations of Modal Symbolic Learning' here).

The package is developed by the ACLAI Lab @ University of Ferrara.

Thanks to Jakob Peters (author of PAndQ.jl) for the interesting discussions and ideas.

More on Sole

Similar Julia Packages for Computational Logic