TensorPolynomialBases.jl

++REPO NOT MAINTAINED++ Gallery of tensor-valued multivariate polynomial bases for the julia language
Author gridap
Popularity
3 Stars
Updated Last
3 Years Ago
Started In
May 2019

TensorPolynomialBases

Build Status Codecov

The TensorPolynomialBases package provides a collection of different types representing tensor-valued multivariate polynomial bases. It provides a common interface, called TensorPolynomialBasis, and several concrete implementations. At the moment, only a concrete implementation, called MonomialBasis is available, which implements a tensor-valued multivariate monomial basis. For representing the tensor values arising in the evaluation of tensor-valued polynomails, the user can either use the StaticArrays or the TensorValues packages.

Quick start

Create a vector-valued monomial basis of P-polynomials in 2 variables

using TensorPolynomialBases
using StaticArrays

# Define a filter to select the monomials in the P-space
filter(e,order) = sum(e) <= order

order= 4
P = SVector{2,Float64} # type of the evaluation point
V = SVector{3,Float64} # type of the value

basis = MonomialBasis{P,V}(filter,order)

# Create scratch data that can be reused between evaluations
cache = ScratchData(basis)

# Evaluation point
x = @SVector rand(3)

# Evaluation
v = zeros(V,length(basis))
evaluate!(v,basis,x,cache) # No memory allocation here
@show v

# Evaluation of the gradient
G = gradient_type(basis)
# G == SMatrix{2,3,T,6}
v = zeros(G,length(basis))
gradient!(v,basis,x,cache) # No memory allocation here
@show v

Create a Tensor-valued monomial basis of the "serendipity" space in 3 variables (this time using the types of the TensorValues package)

using TensorValues

# Define the filter for the serendipity space
filter(e,order) = sum( ( i for i in e if i>1 ) ) <= order

order= 3
P = VectorValue{3,Float64} # type of the evaluation point
V = TensorValue{3,Float64,9} # type of the value (3x3 tensor)

basis = MonomialBasis{P,V}(filter,order)

# Create scratch data that can be reused between evaluations
cache = ScratchData(basis)

# Evaluation point
x = VectorValue(0.1,2.0,3.1)

# Evaluation
v = zeros(V,length(basis))
evaluate!(v,basis,x,cache) # No memory allocation here
@show v

Used By Packages

No packages found.