ThreadedSparseCSR.jl

Multithreaded mat-vec multiplication for sparse matrices in the CSR format, in Julia
Author BacAmorim
Popularity
23 Stars
Updated Last
4 Months Ago
Started In
November 2021

ThreadedSparseCSR

Provides a multithreaded version of sparse CSR matrix - vector multiplication in Julia.

Instalation

To install this package:

using Pkg
Pkg.add("ThreadedSparseCSR")

or

] add ThreadedSparseCSR

The CSR matrix format is implemented in the Julia package SparseMatricesCSR.jl, which must be installed for this package to work.

To enable multithreaded mat-vec multiplication, Julia must be initialized with threads, eitheir by setting the variable JULIA_NUM_THREADS or by initializing julia as julia -t n (to start with n threads).

Functionality

This package implements a multithreaded version of sparse matrix CSR - vector multiplication in Julia.

The package exports the functions:

  • tmul!(y, A, x, [alpha], [beta]), 5 argument (y = alpha*A*x +beta*y ) and 3 argument (y = A*x) in-place multithreaded versions of mul!, using Base.Threads threading (using @spawn)
  • tmul(A, x), multithreaded version of A*x, using Base.Threads threading (using @spawn)
  • bmul!(y, A, x, [alpha], [beta]), 5 argument (y = alpha*A*x +beta*y ) and 3 argument (y = A*x) in-place multithreaded versions of mul!, using Polyester.jl threading (using @batch)
  • bmul(A, x), multithreaded version of A*x, using Polyester.jl threading (using @batch)

The number of Julia threads that are used for sparse mat-vec multiplication can be checked via

ThreadedSparseCSR.get_num_threads()

By default, when the package is first imported, the number of threads is set to Threads.nthreads()

using ThreadedSparseCSR

ThreadedSparseCSR.get_num_threads() == Threads.nthreads() # true

The number of threads can be changed by using the function:

ThreadedSparseCSR.set_num_threads(4) # 4 threads will be used now

It is possible to overwrite the function * and mul! by their multithreaded versions. This is done using the function:

ThreadedSparseCSR.multithread_matmul(PolyesterThreads())

which overwrites * and mul! by bmul and bmul!, respectivelly;

ThreadedSparseCSR.multithread_matmul(BaseThreads())

which overwrites * and mul! by tmul and tmul!, respectivelly;

ThreadedSparseCSR.multithread_matmul()

by default, overwrites * and mul! by bmul and bmul!, respectivelly.

Example Usage

using ThreadedSparseCSR
using SparseArrays, SparseMatricesCSR
using BenchmarkTools

m, n = 1_000, 1_000
d = 0.01
num_nzs = floor(Int, m*n*d)
rows = rand(1:m, num_nzs)
cols = rand(1:n, num_nzs)
vals = rand(num_nzs)

cscA = sparse(rows, cols, vals, m, n)
csrA = sparsecsr(rows, cols, vals, m, n)
x = rand(n)

y1 = rand(n)
y2 = copy(y1)
y3 = copy(y1)


@btime mul!($y1, $csrA, $x, true, false) # non-threaded version
@btime bmul!($y2, $csrA, $x, true, false) # multithreaded version using Polyester.@batch
@btime tmul!($y3, $csrA, $x, true, false) # multithreaded version using Base.Threads.@spawn

ThreadedSparseCSR.multithread_matmul()
@btime mul!($y1, $csrA, $x, true, false) # multithreaded version using Polyester.@batch

ThreadedSparseCSR.multithread_matmul(BaseThreads())
@btime mul!($y1, $csrA, $x, true, false) # multithreaded version using Base.Threads.@spawn

ThreadedSparseCSR.multithread_matmul(PolyesterThreads())
@btime mul!($y1, $csrA, $x, true, false) # multithreaded version using Polyester.@batch


# Change the number of threads:
ThreadedSparseCSR.get_num_threads()
ThreadedSparseCSR.set_num_threads(4)
@btime mul!($y1, $csrA, $x, true, false) # multithreaded version using Polyester.@batch

Benchmarks

Let us compare the performance of multithreaded sparse CSR matrix - vec as implemented in this package, with the non-threaded version and the multithreaded sparse CSC matrix - vec multiplication provided by MKLSparse.jl (both for non-transposed and transposed matrix).

benchmark_csr_matvec.png

Code for benchmark:

using LinearAlgebra, SparseArrays, SparseMatricesCSR, ThreadedSparseCSR
using MKLSparse # to enable multithreaded Sparse CSC Matrix-Vec multiplication
using BenchmarkTools, PyPlot

function benchmark_csr_mv(sizes, densities)
    
    times_csc = zeros(length(sizes), length(densities))
    times_csc_transpose = zeros(length(sizes), length(densities))
    times_csr_mul = zeros(length(sizes), length(densities))
    times_csr_bmul = zeros(length(sizes), length(densities))
    times_csr_tmul = zeros(length(sizes), length(densities))
    
    for (j, d) in enumerate(densities)
        for (i, n) in enumerate(sizes)
            num_nzs = floor(Int, n*n*d)
            rows = rand(1:n, num_nzs)
            cols = rand(1:n, num_nzs)
            vals = rand(num_nzs)
            
            cscA = sparse(rows, cols, vals, n, n)
            cscAt = transpose(cscA)
            csrA = sparsecsr(rows, cols, vals, n, n)
            
            x = rand(n)
            y1 = zeros(n)
            y2 = zeros(n)
            y3 = zeros(n)
            y4 = zeros(n)
            y5 = zeros(n)
            
            b_csc = @benchmark mul!($y1, $cscA, $x, true, false)
            times_csc[i, j] = minimum(b_csc).time/1000 # time in microseconds
            
            b_csc_transpose = @benchmark mul!($y2, $cscAt, $x, true, false)
            times_csc_transpose[i, j] = minimum(b_csc_transpose).time/1000 # time in microseconds
            
            b_csr_mul = @benchmark mul!($y3, $csrA, $x, true, false)
            times_csr_mul[i, j] = minimum(b_csr_mul).time/1000 # time in microseconds
            
            b_csr_bmul = @benchmark bmul!($y4, $csrA, $x, true, false)
            times_csr_bmul[i, j] = minimum(b_csr_bmul).time/1000 # time in microseconds
            
            b_csr_tmul = @benchmark tmul!($y5, $csrA, $x, true, false)
            times_csr_tmul[i, j] = minimum(b_csr_tmul).time/1000 # time in microseconds
            
        end
    end
    
    return times_csc, times_csc_transpose, times_csr_mul, times_csr_bmul, times_csr_tmul
    
end

sizes = [1_000, 5_000, 10_000, 50_000, 100_000]
densities = [0.01, 0.001, 0.0001]

times_csc, times_csc_transpose, times_csr_mul, times_csr_bmul, times_csr_tmul = benchmark_csr_mv(sizes, densities)

f, ax = subplots(1, 3, figsize = (13, 5))

for (i, d) in enumerate(densities)
    ax[i].loglog(sizes, times_csc[:, i], marker = "v", label = "MKLSparse, CSC")
    ax[i].loglog(sizes, times_csc_transpose[:, i], marker = "^", label = "MKLSparse, transpose(CSC)")
    ax[i].loglog(sizes, times_csr_mul[:, i], marker = "h", label = "non-threaded mul (CSR)")
    ax[i].loglog(sizes, times_csr_bmul[:, i], marker = "s", label = "bmul (CSR)")
    ax[i].loglog(sizes, times_csr_tmul[:, i], marker = "o", label = "tmul (CSR)")
    
    ax[i].set_title("non-zero density = $(d)")
    ax[i].set_xlabel("matrix size")
    ax[i].set_ylabel("minimum time [μs]")
    ax[i].set_xticks(sizes)
    ax[i].set_xticklabels(sizes)
end

legend()
tight_layout()
savefig("benchmark_csr_matvec.png", dpi = 300)
versioninfo()
Julia Version 1.6.3
Commit ae8452a9e0 (2021-09-23 17:34 UTC)
Platform Info:
  OS: Linux (x86_64-pc-linux-gnu)
  CPU: AMD Ryzen 7 PRO 4750G with Radeon Graphics
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-11.0.1 (ORCJIT, znver2)
Environment:
  JULIA_NUM_THREADS = 8

Acknowlegments

This package was influenced and inspired by:

Used By Packages

No packages found.