rERP | EEG visualisation | EEG Simulations | BIDS pipeline | Decode EEG data | Statistical testing |
---|---|---|---|---|---|
A toolbox for visualizations of EEG/ERP data and Unfold.jl models. Based on the Unfold and Makie, it grants users high performance, and highly customizable plots.
- ERP plots
- Butterfly plots
- Topography plots
- Topography time series
- ERP grid
- ERP images
- Channel images
- Parallel coordinates
- Design matrices
- Circular topoplots
Click to expand
The recommended way to install julia is juliaup. It allows you to, e.g., easily update Julia at a later point, but also to test out alpha/beta versions etc.
TLDR: If you don't want to read the explicit instructions, just copy the following command
AppStore -> JuliaUp, or winget install julia -s msstore
in CMD
curl -fsSL https://install.julialang.org | sh
in any shell
using Pkg
Pkg.add("UnfoldMakie")
using UnfoldMakie
using CairoMakie # backend
using Unfold, UnfoldSim # Fit / Simulation
data, evts = UnfoldSim.predef_eeg(; noiselevel = 12, return_epoched = true)
data = reshape(data, 1, size(data)...) # simulate a single channel
times = range(0, step = 1 / 100, length = size(data, 2))
m = fit(UnfoldModel, @formula(0 ~ 1 + condition), evts, data, times)
plot_erp(coeftable(m))
Contributions are very welcome. These can be typos, bug reports, feature requests, speed improvements, new solvers, better code, better documentation.
You are very welcome to submit issues and start pull requests!
- We recommend to write a Literate.jl document and place it in
docs/literate/FOLDER/FILENAME.jl
withFOLDER
beingHowTo
,Explanation
,Tutorial
orReference
(recommended reading on the 4 categories). - Literate.jl converts the
.jl
file to a.md
automatically and places it indocs/src/generated/FOLDER/FILENAME.md
. - Edit make.jl with a reference to
docs/src/generated/FOLDER/FILENAME.md
.
If you use these visualizations, please cite:
Benedikt Ehinger 🐛 💻 📖 🤔 🚇 🚧 💬 👀 |
Daniel Baumgartner 💻 📖 |
Vladimir Mikheev 🐛 💻 📖 🤔 🚧 👀 |
Niklas Gärtner 💻 📖 |
Soren Doring 💻 📖 |
Fadil Furkan Lokman 💻 📖 |
Judith Schepers 🐛 🤔 📖 |
René Skukies 📖 |
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 251654672 – TRR 161” / “Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 251654672 – TRR 161.
Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2075 – 390740016