Dependency Packages
-
DifferentialEquations.jl2841Multi-language suite for high-performance solvers of differential equations and scientific machine learning (SciML) components. Ordinary differential equations (ODEs), stochastic differential equations (SDEs), delay differential equations (DDEs), differential-algebraic equations (DAEs), and more in Julia.
-
ModelingToolkit.jl1410An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations
-
Optim.jl1116Optimization functions for Julia
-
NeuralNetDiffEq.jl966Physics-Informed Neural Networks (PINN) Solvers of (Partial) Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
-
NeuralPDE.jl966Physics-Informed Neural Networks (PINN) Solvers of (Partial) Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
-
DSGE.jl864Solve and estimate Dynamic Stochastic General Equilibrium models (including the New York Fed DSGE)
-
DiffEqFlux.jl861Pre-built implicit layer architectures with O(1) backprop, GPUs, and stiff+non-stiff DE solvers, demonstrating scientific machine learning (SciML) and physics-informed machine learning methods
-
DynamicalSystems.jl834Award winning software library for nonlinear dynamics and nonlinear timeseries analysis
-
DiffEqTutorials.jl713Tutorials for doing scientific machine learning (SciML) and high-performance differential equation solving with open source software.
-
Gridap.jl691Grid-based approximation of partial differential equations in Julia
-
SymbolicRegression.jl580Distributed High-Performance Symbolic Regression in Julia
-
OrdinaryDiffEq.jl533High performance ordinary differential equation (ODE) and differential-algebraic equation (DAE) solvers, including neural ordinary differential equations (neural ODEs) and scientific machine learning (SciML)
-
QuantumOptics.jl528Library for the numerical simulation of closed as well as open quantum systems.
-
Trixi.jl522Trixi.jl: Adaptive high-order numerical simulations of conservation laws in Julia
-
ControlSystems.jl508A Control Systems Toolbox for Julia
-
GeoStats.jl506An extensible framework for geospatial data science and geostatistical modeling fully written in Julia
-
QuantEcon.jl504Julia implementation of QuantEcon routines
-
Catalyst.jl455Chemical reaction network and systems biology interface for scientific machine learning (SciML). High performance, GPU-parallelized, and O(1) solvers in open source software.
-
DiffEqBiological.jl455Chemical reaction network and systems biology interface for scientific machine learning (SciML). High performance, GPU-parallelized, and O(1) solvers in open source software.
-
DFTK.jl426Density-functional toolkit
-
Soss.jl414Probabilistic programming via source rewriting
-
DataDrivenDiffEq.jl405Data driven modeling and automated discovery of dynamical systems for the SciML Scientific Machine Learning organization
-
PowerModels.jl388A Julia/JuMP Package for Power Network Optimization
-
StatisticalRethinking.jl386Julia package with selected functions in the R package `rethinking`. Used in the SR2... projects.
-
DiffEqSensitivity.jl329A component of the DiffEq ecosystem for enabling sensitivity analysis for scientific machine learning (SciML). Optimize-then-discretize, discretize-then-optimize, adjoint methods, and more for ODEs, SDEs, DDEs, DAEs, etc.
-
TrajectoryOptimization.jl329A fast trajectory optimization library written in Julia
-
SciMLSensitivity.jl329A component of the DiffEq ecosystem for enabling sensitivity analysis for scientific machine learning (SciML). Optimize-then-discretize, discretize-then-optimize, adjoint methods, and more for ODEs, SDEs, DDEs, DAEs, etc.
-
NLsolve.jl324Julia solvers for systems of nonlinear equations and mixed complementarity problems
-
Evolutionary.jl323Evolutionary & genetic algorithms for Julia
-
Modia.jl321Modeling and simulation of multidomain engineering systems
-
LsqFit.jl313Simple curve fitting in Julia
-
GaussianProcesses.jl308A Julia package for Gaussian Processes
-
Dojo.jl307A differentiable physics engine for robotics
-
DiffEqOperators.jl285Linear operators for discretizations of differential equations and scientific machine learning (SciML)
-
PowerSimulations.jl279Julia for optimization simulation and modeling of PowerSystems. Part of the Scalable Integrated Infrastructure Planning Initiative at the National Renewable Energy Lab.
-
StateSpaceModels.jl271StateSpaceModels.jl is a Julia package for time-series analysis using state-space models.
-
RxInfer.jl260Julia package for automated Bayesian inference on a factor graph with reactive message passing
-
StochasticDiffEq.jl248Solvers for stochastic differential equations which connect with the scientific machine learning (SciML) ecosystem
-
SparseDiffTools.jl238Fast jacobian computation through sparsity exploitation and matrix coloring
-
NonlinearSolve.jl227High-performance and differentiation-enabled nonlinear solvers (Newton methods), bracketed rootfinding (bisection, Falsi), with sparsity and Newton-Krylov support.
Loading more...