240 Stars
Updated Last
11 Months Ago
Started In
January 2019


Documentation Build Status Downloads
docs-stable docs-dev Build status codecov

This Julia package aims at performing automatic bifurcation analysis of possibly large dimensional equations F(u, λ)=0 where λ∈ℝ by taking advantage of iterative methods, dense / sparse formulation and specific hardwares (e.g. GPU).

It incorporates continuation algorithms (PALC, deflated continuation, ...) based on a Newton-Krylov method to correct the predictor step and a Matrix-Free/Dense/Sparse eigensolver is used to compute stability and bifurcation points.

The idea is to be able to seemingly switch the continuation algorithm a bit like changing the time stepper (Euler, RK4,...) for ODEs.

By leveraging on the above method, it can also seek for periodic orbits of Cauchy problems. It is by now, one of the only softwares which provides shooting methods AND methods based on finite differences or collocation to compute periodic orbits.

The current focus is on large scale nonlinear problems and multiple hardwares. Hence, the goal is to use Matrix Free methods on GPU (see PDE example and Periodic orbit example) or on a cluster to solve non linear PDE, nonlocal problems, compute sub-manifolds...

Despite focus on large scale problems, the package can easily handle low dimensional problems and specific optimizations are regularly added.

Support and citation

If you use this package for your work, we ask that you cite the following paper. Open source development as part of academic research strongly depends on this. Please also consider starring this repository if you like our work, this will help us to secure funding in the future. It is referenced on HAL-Inria as follows:

  TITLE = {{BifurcationKit.jl}},
  AUTHOR = {Veltz, Romain},
  URL = {https://hal.archives-ouvertes.fr/hal-02902346},
  INSTITUTION = {{Inria Sophia-Antipolis}},
  YEAR = {2020},
  MONTH = Jul,
  KEYWORDS = {pseudo-arclength-continuation ; periodic-orbits ; floquet ; gpu ; bifurcation-diagram ; deflation ; newton-krylov},
  PDF = {https://hal.archives-ouvertes.fr/hal-02902346/file/354c9fb0d148262405609eed2cb7927818706f1f.tar.gz},
  HAL_ID = {hal-02902346},
  HAL_VERSION = {v1},


This package requires Julia >= v1.3.0

To install it, please run

] add BifurcationKit

To install the bleeding edge version, please run

] add BifurcationKit#master


Most plugins are located in the organization bifurcationkit:

Examples of bifurcation diagrams

Automatic Bif. Diagram in 1D Swift Hohenberg Automatic Bif. Diagram in 2D Bratu
Snaking in 2D Swift Hohenberg Periodic orbits in 1D Brusselator
Period doubling BVAM Model Periodic orbits in 2D Ginzburg-Landau
Deflated Continuation in Carrier problem 2D Swift Hohenberg on GPU

Main features

The list of capabilities is available here.