BigO.jl

Complexity estimation library
Author endremborza
Popularity
4 Stars
Updated Last
1 Year Ago
Started In
March 2021

BigO

Stable Dev Build Status Coverage

Julia library for complexity plotting and estimation

Quickstart

using Random
using BigO



function lamesort!(a)
    for i in axes(a,1)
        for j in 1:i
            if a[i] < a[j]
                 a[j], a[i] = a[i], a[j]
            end
        end
    end
end

function _merge(a1::AbstractArray{T, 1}, a2::AbstractArray{T, 1}) where {T}
    n1, n2 = size(a1,1), size(a2,1)
    n = n1 + n2
    out = Array{T,1}(undef, n)
    i, j = 1, 1
    while i + j <= n + 1
        if (i > n1) e = a2[j]; j += 1
        elseif (j > n2) e = a1[i]; i += 1
        elseif (a1[i] > a2[j]) e = a2[j]; j += 1
        else e = a1[i]; i += 1 end
        out[i+j - 2 ] = e
    end
    return out
end

function mergesort(a)
    n = size(a, 1)
    n == 1 && return a
    h = n ÷ 2
    return _merge(mergesort(a[1:h]), mergesort(a[h+1:n]))
end


report = RunReport([mergesort, lamesort!], randperm, 100:1000:10100, seconds=0.2; samples=200)
report |> bigos

Dict{String,String} with 2 entries: "mergesort" => "O(n log n)" "lamesort!" => "O(n^p)"

using Plots
report |> plot

plot

Used By Packages

No packages found.