InMemoryDatasets.jl

Multithreaded package for working with tabular data in Julia
Popularity
127 Stars
Updated Last
5 Months Ago
Started In
June 2021

InMemoryDatasets

CI

Documentation

The latest release's Documentation is available via https://sl-solution.github.io/InMemoryDatasets.jl/stable.

Introduction

InMemoryDatasets.jl is a multithreaded package for data manipulation and is designed for Julia 1.6+ (64bit OS). The core computation engine of the package is a set of customised algorithms developed specifically for columnar tables. The package performance is tuned with two goals in mind, a) low overhead of allowing missing values everywhere, and b) the following priorities - in order of importance:

  1. Low compilation time
  2. Memory efficiency
  3. High performance

we do our best to keep the overall complexity of the package as low as possible to simplify:

  • the maintenance of the package
  • adding new features to the package
  • contributing to the package

See here for some benchmarks.

Features

InMemoryDatasets.jl has many interesting features, here, we highlight some of our favourites (in no particular order):

  • Assigning a named function to a column as its format
    • By default, formatted values are used for operations like: displaying, sorting, grouping, joining,...
    • Format evaluation is lazy
    • Formats don't change the actual values
  • Multi-threading across the whole package
    • Most functions in InMemoryDatasets.jl exploit all cores available to Julia by default
    • Disabling parallel computation via passing the threads = false keyword argument to functions
  • Powerful row-wise operations
    • Support many common operations
    • Specialised operations for modifying columns
    • Customised row-wise operations for filtering observations / filter simply wraps byrow
  • Unique approach for reshaping data
    • Unified syntax for all type of reshaping
    • Cover all reshaping functions:
      • stacking and un-stacking on single/multiple columns
      • wide to long and long to wide reshaping
      • transposing and more
  • Fast sorting algorithms
    • Stable and Unstable HeapSort and QuickSort algorithms
    • Count sort for integers
  • Compiler friendly grouping algorithms
    • groupby!/groupby to group observation using sorting algorithms - sorted order
    • gatherby to group observation using hybrid hash algorithms - observations order
    • incremental grouping operation for groupby!/groupby, i.e. adding a column at a time
  • Efficient joining algorithms
    • Preserve the order of observations in the left data set
    • Support two methods for joining: sort-merge join and hash join.
    • Customised columnar-hybrid-hash algorithms for join
    • Inequality-kind (non-equi) and range joins for innerjoin, contains, semijoin!/semijoin, antijoin!/antijoin
    • closejoin!/closejoin for non exact match join
    • update!/update for updating a master data set with values from a transaction data set

Example

julia> using InMemoryDatasets
julia> g1 = repeat(1:6, inner = 4);
julia> g2 = repeat(1:4, 6);
julia> y = ["d8888b.  ", " .d8b.   ", "d888888b ", "  .d8b.  ", "88  `8D  ", "d8' `8b  ",
            "`~~88~~' ", " d8' `8b ", "88   88  ", "88ooo88  ", "   88    ", " 88ooo88 ",
            "88   88  ", "88~~~88  ", "   88    ", " 88~~~88 ", "88  .8D  ", "88   88  ",
            "   88    ", " 88   88 ", "Y8888D'  ", "YP   YP  ", "   YP    ", " YP   YP "];
julia> ds = Dataset(g1 = g1, g2 = g2, y = y)
24×3 Dataset
 Row │ g1        g2        y         
     │ identity  identity  identity  
     │ Int64?    Int64?    String?   
─────┼───────────────────────────────
   11         1  d8888b.
   21         2   .d8b.
   31         3  d888888b
   41         4    .d8b.
   52         1  88  `8D
   6 │        2         2  d8' `8b
   72         3  `~~88~~'
   8 │        2         4   d8' `8b
   93         1  88   88
  103         2  88ooo88
  113         3     88
  123         4   88ooo88
  134         1  88   88
  144         2  88~~~88
  154         3     88
  164         4   88~~~88
  175         1  88  .8D
  185         2  88   88
  195         3     88
  205         4   88   88
  216         1  Y8888D'
  226         2  YP   YP
  236         3     YP
  246         4   YP   YP

julia> sort(ds, :g2)
24×3 Sorted Dataset
 Sorted by: g2
 Row │ g1        g2        y         
     │ identity  identity  identity  
     │ Int64?    Int64?    String?   
─────┼───────────────────────────────
   11         1  d8888b.
   22         1  88  `8D
   3 │        3         1  88   88
   4 │        4         1  88   88
   5 │        5         1  88  .8D
   6 │        6         1  Y8888D'
   7 │        1         2   .d8b.
   8 │        2         2  d8' `8b
   93         2  88ooo88
  104         2  88~~~88
  115         2  88   88
  126         2  YP   YP
  131         3  d888888b
  142         3  `~~88~~'
  15 │        3         3     88
  16 │        4         3     88
  17 │        5         3     88
  18 │        6         3     YP
  19 │        1         4    .d8b.
  20 │        2         4   d8' `8b
  213         4   88ooo88
  224         4   88~~~88
  235         4   88   88
  246         4   YP   YP

julia> tds = transpose(groupby(ds, :g1), :y)
6×6 Dataset
 Row │ g1        _variables_  _c1        _c2        _c3        _c4       
     │ identity  identity     identity   identity   identity   identity  
     │ Int64?    String?      String?    String?    String?    String?   
─────┼───────────────────────────────────────────────────────────────────
   11  y            d8888b.     .d8b.     d888888b     .d8b.
   22  y            88  `8D    d8' `8b    `~~88~~'    d8' `8b
   33  y            88   88    88ooo88       88       88ooo88
   44  y            88   88    88~~~88       88       88~~~88
   55  y            88  .8D    88   88       88       88   88
   66  y            Y8888D'    YP   YP       YP       YP   YP

julia> mds = map(tds, x->replace(x, r"[^ ]"=>""), r"_c")
6×6 Dataset
 Row │ g1        _variables_  _c1        _c2        _c3        _c4       
     │ identity  identity     identity   identity   identity   identity  
     │ Int64?    String?      String?    String?    String?    String?   
─────┼───────────────────────────────────────────────────────────────────
   11  y            ∑∑∑∑∑∑∑     ∑∑∑∑∑     ∑∑∑∑∑∑∑∑     ∑∑∑∑∑
   22  y            ∑∑  ∑∑∑    ∑∑∑ ∑∑∑    ∑∑∑∑∑∑∑∑    ∑∑∑ ∑∑∑
   33  y            ∑∑   ∑∑    ∑∑∑∑∑∑∑       ∑∑       ∑∑∑∑∑∑∑
   44  y            ∑∑   ∑∑    ∑∑∑∑∑∑∑       ∑∑       ∑∑∑∑∑∑∑
   55  y            ∑∑  ∑∑∑    ∑∑   ∑∑       ∑∑       ∑∑   ∑∑
   66  y            ∑∑∑∑∑∑∑    ∑∑   ∑∑       ∑∑       ∑∑   ∑∑

julia> byrow(mds, sum, r"_c", by = x->count(isequal(''),x))
6-element Vector{Union{Missing, Int64}}:
 25
 25
 20
 20
 15
 17

julia> using Chain

julia> @chain mds begin
           repeat!(2)
           sort!(:g1)
           flatten!(r"_c")
           insertcols!(:g2=>repeat(1:9, 12))
           groupby(:g2)
           transpose(r"_c")
           modify!(r"_c"=>byrow(x->join(reverse(x))))
           select!(r"row")
           insertcols!(1, :g=>repeat(1:4, 9))
           sort!(:g)
       end
36×2 Sorted Dataset
 Sorted by: g
 Row │ g         row_function
     │ identity  identity     
     │ Int64?    String?      
─────┼────────────────────────
   11  ∑∑∑∑∑∑∑∑∑∑∑∑
   21  ∑∑∑∑∑∑∑∑∑∑∑∑
   31  ∑∑        ∑∑
   41  ∑∑        ∑∑
   51  ∑∑∑∑    ∑∑∑∑
   61  ∑∑∑∑∑∑∑∑∑∑∑∑
   71  ∑∑∑∑∑∑∑∑∑∑∑∑
   81
   91
  102  ∑∑∑∑∑∑∑∑∑∑
  112  ∑∑∑∑∑∑∑∑∑∑∑∑
  122      ∑∑∑∑∑∑∑∑
  132      ∑∑∑∑  ∑∑
  142      ∑∑∑∑∑∑∑∑
  152  ∑∑∑∑∑∑∑∑∑∑∑∑
  162  ∑∑∑∑∑∑∑∑∑∑
  172
  182
  193          ∑∑∑∑
  203          ∑∑∑∑
  213          ∑∑∑∑
  223  ∑∑∑∑∑∑∑∑∑∑∑∑
  233  ∑∑∑∑∑∑∑∑∑∑∑∑
  243          ∑∑∑∑
  253          ∑∑∑∑
  263          ∑∑∑∑
  273
  284
  294  ∑∑∑∑∑∑∑∑∑∑
  304  ∑∑∑∑∑∑∑∑∑∑∑∑
  314      ∑∑∑∑∑∑∑∑
  324      ∑∑∑∑  ∑∑
  334      ∑∑∑∑∑∑∑∑
  344  ∑∑∑∑∑∑∑∑∑∑∑∑
  354  ∑∑∑∑∑∑∑∑∑∑
  364

Acknowledgement

We like to acknowledge the contributors to Julia's data ecosystem, especially DataFrames.jl, since the existence of their works gave the development of InMemoryDatasets.jl a head start.