KWLinalg.jl

Preallocated/Inplace linear algebra operations in julia
Author Algopaul
Popularity
8 Stars
Updated Last
4 Months Ago
Started In
July 2022

KWLinalg

Build status Coverage Status

We provide wrappers for linear algebra routines that allow to pre-allocate memory for repeated executions of the same operations. For convenience, we also provide functors, that contain the necessary memory and can be called with no further allocations.

Example

Running the code

using KWLinalg
using BenchmarkTools

m, n = 5, 3
dtype = Float64
A = rand(dtype, m, n)
AC = deepcopy(A)
f = svd_functor_divconquer(m, n, Float64)
function copy_and_svd_inplace!(A, AC, f)
    AC .= A
    f(AC)
    return nothing
end
@benchmark $copy_and_svd_inplace!($A, $AC, $f)

leads to following result:

BenchmarkTools.Trial: 10000 samples with 9 evaluations.
 Range (min  max):  2.612 μs    8.526 μs  ┊ GC (min  max): 0.00%  0.00%
 Time  (median):     2.659 μs               ┊ GC (median):    0.00%
 Time  (mean ± σ):   2.672 μs ± 193.544 ns  ┊ GC (mean ± σ):  0.00% ± 0.00%

              ▄▇█▆▁                                            
  ▂▂▂▂▂▂▂▂▃▄▅██████▆▃▂▂▂▂▂▁▂▂▁▁▁▁▁▂▁▁▁▂▂▁▁▂▂▂▂▂▁▂▂▂▁▁▁▁▂▂▁▂▂▂ ▃
  2.61 μs         Histogram: frequency by time        2.81 μs <

 Memory estimate: 0 bytes, allocs estimate: 0.

In contrast, using the LinearAlgebra function svd! as in

using LinearAlgebra
using BenchmarkTools

m, n = 5, 3
dtype = Float64
A = rand(dtype, m, n)
AC = deepcopy(A)
function copy_and_svd!(A, AC)
    AC .= A
    svd!(AC)
    return nothing
end
@benchmark $copy_and_svd!($A, $AC)

leads to following result:

BenchmarkTools.Trial: 10000 samples with 8 evaluations.
 Range (min  max):  3.101 μs  96.520 μs  ┊ GC (min  max): 0.00%  94.23%
 Time  (median):     3.154 μs              ┊ GC (median):    0.00%
 Time  (mean ± σ):   3.297 μs ±  1.473 μs  ┊ GC (mean ± σ):  0.75% ±  1.64%

  ▃▇█▇▅▃▁           ▁▁▁▁▁▂▃▂▂▂▂▃▃▂▁▂▂▂▁▁                     ▂
  ███████▄▄▄▁▅▁▅▇▇▅▇████████████████████████▇▆▅▆▅▅▆▅▄▅▆▆▆▆▆▆ █
  3.1 μs       Histogram: log(frequency) by time     4.14 μs <

 Memory estimate: 2.45 KiB, allocs estimate: 6.

The time-difference is mostly due to the overhead of garbage collection. KWLinalg provides a benefit, when linear algebra operations are performed on dense matrices of the same size for potentially millions of times (e.g. within an optimization loop).

Installation

KWLinalg can be installed via Pkg:

using Pkg
Pkg.add(url="https://github.com/Algopaul/KWLinalg.jl.git")

For a detailed description of the package and its functionality, we refer to the documentation.

Used By Packages

No packages found.