LocalPoly.jl

Local polynomial regression in pure Julia
Author jbshannon
Popularity
13 Stars
Updated Last
8 Months Ago
Started In
July 2022

LocalPoly.jl

Build Status

LocalPoly.jl is a Julia implementation of the local polynomial regression methods outlined in Fan and Gijbels (1996). This package is still experimental, and the API is subject to change.

Overview

This package provides the function lpreg, which computes the local polynomial regression coefficients for input data of any dimension. Since the local polynomial estimator is much faster over a grid of evenly-spaced data points, performance can be improved by first projecting the data to such a grid using the linear_binning function.

Examples

using LocalPoly, Random
Random.seed!(42)
x = 2π * rand(1000)
y = sin.(x) + randn(size(x))/4
grid = linear_binning(x, y; nbins=100)
β̂ = lpreg(grid)

The first element of the coefficient vector represents the function estimate at the point of evaluation:

julia>= first.(β̂)
100-element Vector{Float64}:
 -0.03070776997429395
  0.048352477003287916
  
 -0.04452583837750935
 -0.04543586963674676

The estimation points can be recovered by using the gridnodes method:

julia> v = gridnodes(grid)
100-element Vector{Float64}:
 0.0005470440483675072
 0.06395994969485173
 
 6.215011797403821
 6.278424703050305

Plotting the fitted function values against the data:

using CairoMakie
f = Figure()
ax = Axis(f[1, 1])
scatter!(ax, x, y; markersize=2, label="Data")
lines!(ax, v, sin.(v); color=Cycled(2), label="True values")
lines!(ax, v, ŷ; color=:tomato, linewidth=3, label="Fitted values")
Legend(f[2, 1], ax; orientation=:horizontal, framevisible=false)
current_figure()

Fit Fit

Standard Errors

The bias and variance of the estimated coefficients can be estimated by fitting a "pilot" model using a different bandwidth and higher-degree polynomial approximation (see documentation for details):

julia> ci = confint(grid; α=0.05)
100-element Vector{Tuple{Float64, Float64}}:
 (-0.01564668938703559, 0.2698268678178526)
 (0.04315971509904605, 0.22372303301848356)
 (0.09309771887828536, 0.23823437533995848)
 
 (-0.24787454088605573, -0.024976639691117714)
 (-0.2363528259834405, 0.04772308836500469)
 (-0.3155131059523961, 0.12284688160121504)

Adding the confidence intervals to the plot:

band!(ax, v, first.(ci), last.(ci); color=(:tomato, 0.3))
current_figure()

Fit with confidence interval Fit with confidence interval

Derivative Estimation

One of the advantages of the local polynomial estimator is its ability to nonparametrically estimate the derivatives of the regression function. To estimate the $\nu$-th derivative of the function, we simply fit a model with degree of at least $\nu+1$.

ν = 1
degree = ν+1
h = plugin_bandwidth(grid; ν)
β̂1 = lpreg(grid; degree, h)
ŷ′ = [b[ν+1] for b in β̂1]
ci1 = confint(grid; ν, p=degree)

fig, ax, sc = scatter(x, y; color=Cycled(1), markersize=3, label="Data")
lines!(ax, v, cos.(v); label="True values")
lines!(ax, v, ŷ′; linewidth=3, label="Fitted values")
band!(ax, v, first.(ci1), last.(ci1); color=(:tomato, 0.3))
Legend(fig[2, 1], ax; orientation=:horizontal)
current_figure()

Fit derivative curve Fit derivative curve

Fits can be improved with more sophisticated bandwidth selection techniques (TBD).

Performance

Set the number of observations to 100,000 and $Y_i = \sin(X_i) + \varepsilon_i$ for $X_i \in [0, 2\pi]$. Evaluate the local polynomial estimator at 1,000 points.

using BenchmarkTools, LocalPoly
x = 2π * rand(100_000)
y = sin.(x) + randn(size(x))/10
@btime grid = linear_binning($x, $y; nbins=1000)
# 1.072 ms (2 allocations: 15.88 KiB)
@btime h = plugin_bandwidth($grid)
# 5.825 μs (14 allocations: 14.23 KiB)
@btime lpreg($grid; h=$h)
# 136.371 μs (392 allocations: 35.23 KiB)

R

library(KernSmooth)
library(microbenchmark)
x <- 2*pi*runif(100000)
y <- sin(x) + rnorm(100000)/10
v <- seq(from = 0, to = 2*pi, length.out = 1000)
h <- dpill(x, y, gridsize = 1000, range.x = c(0, 2*pi))
microbenchmark("KernSmooth" = locpoly(x, y, bandwidth = h, gridsize = 1000, range.x = c(0, 2*pi)))

Output:

Unit: milliseconds
       expr      min       lq     mean   median       uq      max neval
 KernSmooth 2.062024 2.992719 3.506988 3.205222 3.713487 12.05903   100

Stata

clear all
qui set obs 100000
gen x = 2*3.14159265*runiform()
gen y = sin(x) + rnormal()/10
forval i = 1/10 {
    timer on `i'
    lpoly y x, n(1000) kernel(epan2) degree(1) nograph
    timer off `i'
}
timer list

Output (measured in seconds):

1:     14.59 /        1 =      14.5850
2:     14.45 /        1 =      14.4500
3:     14.07 /        1 =      14.0730
4:     14.31 /        1 =      14.3090
5:     14.44 /        1 =      14.4440
6:     14.31 /        1 =      14.3120
7:     14.06 /        1 =      14.0630
8:     14.22 /        1 =      14.2160
9:     14.33 /        1 =      14.3280
10:     15.00 /        1 =      14.9980

MATLAB

x = rand(100000, 1);
y = sin(x) + randn(100000, 1)/10;
v = linspace(min(x), max(x), 1000);
h = 0.087; % approximate plugin bandwidth

T = 100; % number of benchmark trials to run
tocs = zeros(T, 1);
for i = 1:numel(tocs)
    tic; lpreg(x, y, v, h); tocs(i) = toc;
end
fprintf('mean = %4.3f s\n std = %4.3f s\n', mean(tocs), std(tocs));

function betas = lpreg(x, y, v, h)
    X = [ones(size(x)) x];
    betas = v;
    for i = 1:numel(v)
        d = x - v(i);
        X(:, 2) = d;
        w = kernelfunc(d/h)/h;
        beta = inv(X' * (w .* X))*(X' * (w .* y));
        betas(i) = beta(1);
    end

    function z = kernelfunc(u)
        I = abs(u) <= 1;
        z = zeros(size(u));
        z(I) = 3*(1-u(I).^2)/4;
    end
end

Output:

mean = 2.739 s
 std = 0.130 s

References

  1. Fan, J., & Gijbels, I. (1996). Local Polynomial Modelling and its Applications (1st ed.). Chapman & Hall.
  2. Wand, M. P. (1994). Fast Computation of Multivariate Kernel Estimators. Journal of Computational and Graphical Statistics, 3(4), 433–445. https://doi.org/10.2307/1390904